Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered Immune Cells Play Role in Inflammatory Brain Diseases

29.01.2019

Previously unknown cell types play a crucial role in brain autoimmune diseases like multiple sclerosis / Hopes for more specific therapeutic approaches less prone to side effects / Study published in the journal Science

A team of researchers under the direction of the Medical Center – University of Freiburg has succeeded in demonstrating in an animal model that previously entirely unknown types of immune cells are present in the inflamed brain in the course of multiple sclerosis (MS).


Immune fluorescence of inflammatory microglia (depected in red) and blood-derived invading blood monocytes (shown in green).

Picture by MJC Jordao, University of Freiburg – Medical Center


Comprehensive map of the CNS immune cell populations during neuroinflammation. Each immune cell is represented as a dot and cluster together according to their transcriptomic profile.

Picture by MJC Jordao / University of Freiburg – Medical Center

The discovery was made by means of a new, high-resolution method for analyzing single cells. The method allowed the researchers from Freiburg and Munich to create a kind of immune cell atlas for the brain.

They also showed how these cells promote the development of the autoimmune disease MS. The researchers report on their study in the January issue of the renowned journal Science, published on 25 January 2019.

“Our findings constitute a breakthrough for the understanding of autoimmune diseases like multiple sclerosis. We hope that it will now be possible to develop new, more cell-specific therapeutic approaches that are less prone to side-effects for treating inflammatory diseases like MS,” says project director Prof. Dr. Marco Prinz, medical director of the Institute of Neuropathology at the Medical Center – University of Freiburg.

“The main problem with the previous, inadequate therapy was that it inhibited the entire immune system. However, we succeeded in finding new subtypes of cells that are specific for local inflammation and destruction in MS. They might therefore be selectively inactivated,” says Prof. Prinz.

Women Suffer More Often from Multiple Sclerosis

Multiple Sclerosis is one of the most common inflammatory diseases of the central nervous system (CNS), which includes the brain and spinal cord. The disease develops in women more often than in men and typically first manifests between the ages of 20 and 40. In Germany, around 120,000 people suffer from MS.

“It is assumed that MS is an autoimmune disease in which immune cells mistakenly attack structures of the central nervous system and cause the inflammation,” explains Prof. Prinz, who is also involved in the Signalling Research Centres BIOSS and CIBSS, University of Freiburg.

The fact that phagocytes from the blood and the brain play a role in MS has already long been known, but it was unclear up to now precisely which subtypes are involved. After years of research work, the scientists have now identified these subtypes in an animal model of multiple sclerosis.

A New Immune Cell Atlas

Using the latest high-resolution single-cell methods, the researchers succeeded in mapping the complex composition of cells located at the focus of inflammation, the so-called inflammation infiltrate. This enabled them to create a new immune cell atlas.

The single-cell analyses used by the researchers are new and can be used in medicine for studying individual cells from tissues. The researchers see them as having enormous potential.

“These methods allow us to paint an entirely new cellular picture of very complex tissues like the brain,” says Dr. Dominic Grün, one of the pioneers of this technique and research group leader at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg, which participated in the study.

The first author of the study, Marta Joana Costa Jordão, doctoral candidate at the Institute of Neuropathology of the Medical Center – University of Freiburg, also managed to demonstrate that different phagocytes in the brain remain chronically activated in the course of the disease. It was previously assumed that they were quickly renewed by circulating blood cells. “This permanent activation of the immune cells could explain why the brain of an MS patient is chronically attacked over the course of years,” says Costa Jordão.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Marco Prinz
Medical Director
Institute of Neuropathology
Medical Center – University of Freiburg
Telephone: +49 (0)761 270-51060
marco.prinz@uniklinik-freiburg.de

Originalpublikation:

Original title of the study: Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation
DOI: 10.1126/science.aat7554
Link to the study: http://science.sciencemag.org/content/363/6425/eaat7554

Weitere Informationen:

http://science.sciencemag.org/content/363/6425/eaat7554 Link to the study
https://www.uniklinik-freiburg.de/neuropathology.html Institute of Neuropathology

Benjamin Waschow | idw - Informationsdienst Wissenschaft
Further information:
http://www.uniklinik-freiburg.de

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>