Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered Gene Regulator Could Precisely Target Sickle Cell Disease

14.10.2013
A research team from Dana-Farber/Boston Children's Cancer and Blood Disorders Center and other institutions has discovered a new genetic target for potential therapy of sickle cell disease (SCD). The target, called an enhancer, controls a molecular switch in red blood cells called BCL11A that, in turn, regulates hemoglobin production.

The researchers—led by Daniel Bauer, MD, PhD, and Stuart Orkin, MD, of Dana-Farber/Boston Children's—reported their findings today in Science.

Prior work by Orkin and others has shown that when flipped off, BCL11A causes red blood cells to produce fetal hemoglobin that, in SCD patients, is unaffected by the sickle cell mutation and counteracts the deleterious effects of sickle hemoglobin. BCL11A is thus an attractive target for treating SCD.

The disease affects roughly 90,000 to 100,000 people in the United States and millions worldwide.

However, BCL11A plays important roles in other cell types, including the immune system's antibody-producing B cells, which raises concerns that targeting it directly in sickle cell patients could have unwanted consequences.

The discovery of this enhancer—which regulates BCL11A only in red blood cells—opens the door to targeting BCL11A in a more precise manner. Approaches that disable the enhancer would have the same end result of turning on fetal hemoglobin in red blood cells due to loss of BCL11A, but without off-target effects in other cell types.

The findings were spurred by the observation that some patients with SCD spontaneously produce higher levels of fetal hemoglobin and enjoy an improved prognosis. The researchers found that these individuals possess naturally occurring beneficial mutations that function to weaken the enhancer, turning BCL11A's activity down and allowing red blood cells to manufacture some fetal hemoglobin.

"This finding gives us a very specific target for sickle cell disease therapies," said Orkin, a leader of Dana-Farber/Boston Children's who serves as chairman of pediatric oncology at Dana-Farber Cancer Institute and associate chief of hematology/oncology at Boston Children's Hospital. "Coupled with recent advances in technologies for gene engineering in intact cells, it could lead to powerful ways of manipulating hemoglobin production and new treatment options for hemoglobin diseases."

"This is a very exciting study," said Feng Zhang, PhD, a molecular biologist and specialist in genome engineering at the McGovern Institute for Brain Research at the Massachusetts Institute of Technology (MIT) and the Broad Institute of MIT and Harvard, who was not involved in the study. "The findings suggest a potential new approach to treating sickle cell disease and related diseases, one that relies on nucleases to remove this regulatory region, rather than adding an exogenous gene as in classic gene therapy."

The study was supported by the National Heart, Lung and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the Doris Duke Charitable Foundation and the Howard Hughes Medical Institute.

The Dana-Farber/Boston Children’s Cancer and Blood Disorders Center brings together two internationally known research and teaching institutions that have provided comprehensive care for pediatric oncology and hematology patients since 1947. The Harvard Medical School affiliates share a clinical staff that delivers inpatient care at Boston Children’s Hospital and outpatient care at the Dana-Farber Cancer Institute’s Jimmy Fund Clinic. Dana-Farber/Boston Children’s brings the results of its pioneering research and clinical trials to patients’ bedsides through five clinical centers: the Blood Disorders Center, the Brain Tumor Center, the Hematologic Malignancies Center, the Solid Tumors Center, and the Stem Cell Transplant Center.

Irene Sege | Newswise
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>