Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered epidermal growth factor receptor active in human pancreatic cancers

21.04.2009
Therapeutic promise

Finally some promising news about pancreatic cancer, one of the most fatal cancers, due to the difficulties of early detection and the lack of effective therapies: Johns Hopkins University pathologist Akhilesh Pandey has identified an epidermal growth factor receptor aberrantly active in approximately a third of the 250 human pancreatic cancers studied.

In a presentation April 18, at Experimental Biology 2009 in New Orleans, Dr. Pandey explained why this finding and related work in his Hopkins laboratory is promising in terms of both a new treatment for a large subset of pancreatic cancers and a potential blood or urine screening tool that might eventually do for pancreatic cancer detection what biomarkers like prostate-specific antigen levels have done for prostate cancer. His presentation was part of the scientific program of the American Society for Investigative Pathology.

Personalized treatment. Phosophorylated epidermal growth factor receptor (pEGFR), the receptor identified by Dr. Pandey, is closely related to HER-2, a growth factor receptor found and used as a drug target in a subset of breast cancers. After he found and profiled the pEGFR activated in the pancreatic cancers, Dr. Pandey realized the same receptor had been found by other researchers to be activated in a subset of lung cancers. And, most promising, an EGFR inhibitor named erlotinib already has been through the long and complex Food and Drug Administration approval process and is in use for treatment of these specific lung cancers.

But would the drug work in pancreatic cancers? Dr. Pandey's group moved from studies of human cell lines to studies in mice in which human pancreatic tumor cells with activated EGFT had been placed. The tumors began growing. But when treated with erlotinib, they began to shrink. Other tumors without activated pECFR showed no response.

The promise – and the challenge – of using pEGFR is that of personalized medicine, says Dr. Pandey. Obviously a growth factor receptor that is activated only in a subset of all pancreatic cancers cannot be a one-size-fits-all target for treatment. Earlier studies in other laboratories and clinical trials already had tried EGF inhibitors as a treatment for pancreatic cancer and concluded that they did not work. When Dr. Pandey's collaborators allowed them to re-examine their samples, they found that the only case in 12 cases that had responded to the EGF inhibitor was the only case with an activated EGF receptor. Dr. Pandey would like to see other researchers go back and re-analyze their data, separating patients with and without the activated receptor, and then determining the success rate. He believes it would tell a different, more hopeful story.

Screening for pancreatic cancer. Dr. Pandey's other goal in his research is to use mass spectrometry to find additional markers of pancreatic cancer in the tumors themselves but also in blood and urine, which would avoid the problems of invasive biopsies. As a first step, his team has gone through the scientific literature to create a compendium of several hundred proteins and genes reported to be overexpressed in pancreatic cancers, making them excellent candidates for further study. The compendium already is being used by a consortium of investigators who are developing antibodies against the 60 most promising targets.

Co-authors of the Experimental Biology study are Hopkins faculty Dr. Antonio Jimeno, Dr. Henrik Molina, Dr. Ralph Hruban, Dr. Anirban Maitra, and Dr. Manuel Hidalgo; and H. C. Harsha, a graduate student in Dr. Pandey's laboratory who is also a member of the Institute of Bioinformatics in Bangalore, India. The research was supported by the Sol Goldman Trust for Pancreatic Cancer Research.

Sylvia Wrobel | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>