Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered deep-sea microbes gobble greenhouse gases and perhaps oil spills, too

27.11.2018

Scientists at The University of Texas at Austin's Marine Science Institute have discovered nearly two dozen new types of microbes, many of which use hydrocarbons such as methane and butane as energy sources to survive and grow--meaning the newly identified bacteria might be helping to limit the concentrations of greenhouse gases in the atmosphere and might one day be useful for cleaning up oil spills.

In a paper published in Nature Communications this week, researchers documented extensive diversity in the microbial communities living in the extremely hot, deep-sea sediments located in the Guaymas Basin in the Gulf of California.


Researchers have documented extensive diversity in the microbial communities living in the extremely hot, deep-sea sediments located in the Guaymas Basin in the Gulf of California. This view of the Guaymas Basin seafloor was taken through the window of the Alvin submersible by Brett Baker in November 2018.

Credit: Brett Baker/University of Texas at Austin

The team uncovered new microbial species that are so genetically different from those that have been previously studied that they represent new branches in the tree of life. Many of these same species possess keen pollutant-eating powers, like other, previously identified microbes in the ocean and soil.

"This shows the deep oceans contain expansive unexplored biodiversity, and microscopic organisms there are capable of degrading oil and other harmful chemicals," said assistant professor of marine science Brett Baker, the paper's primary investigator.

"Beneath the ocean floor huge reservoirs of hydrocarbon gases--including methane, propane, butane and others--exist now, and these microbes prevent greenhouse gases from being released into the atmosphere."

The new study, representing the largest-ever genomic sampling of Guaymas Basin sediments, was co-authored by former UT postdoctoral researcher Nina Dombrowski and University of North Carolina professor Andreas P. Teske.

The researchers' analysis of sediment from 2,000 meters below the surface, where volcanic activity raises temperatures to around 200 degrees Celsius, recovered 551 genomes, 22 of which represented new entries in the tree of life.

According to Baker, these new species were genetically different enough to represent new branches in the tree of life, and some were different enough to represent entirely new phyla.

"The tree of life is something that people have been trying to understand since Darwin came up with the concept over 150 years ago, and it's still this moving target at the moment," said Baker, who earlier was part of a team that mapped the most comprehensive genomic tree of life to date.

"Trying to map the tree is really kind of crucial to understanding all aspects of biology. With DNA sequencing and the computer approaches that we use, we're getting closer, and things are expanding quickly."

Only about 0.1 percent of the world's microbes can be cultured, which means there are thousands, maybe even millions, of microbes yet to be discovered.

Baker's team investigates interactions between microbial communities and the nutrients available to them in the environment by taking samples of sediment and microbes in nature, and then extracting DNA from the samples. The researchers sequence the DNA to piece together individual genomes, the sets of genes in each organism, and infer from the data how microbes consume different nutrients.

"For this, we try to look for organisms that have been studied before and look for similarities and differences," said Dombrowski, who is now at the Royal Netherlands Institute for Sea Research. "This might initially sound easy, but really is not, since often more than half of the genes we find are so far uncharacterized and unknown."

The samples were collected using the Alvin submersible, the same sub that found the Titanic, because the microbes live in extreme environments. Teske, who collaborated with Baker and Dombrowski, has driven sample collection at Guaymas Basin for several years, working with scientists across the world who are using different approaches to study life there.

This month, Baker is part of a team on the Alvin sampling in areas of the basin that previously have never been studied.

"We think that this is probably just the tip of the iceberg in terms of diversity in the Guaymas Basin," Baker said. "So, we're doing a lot more DNA sequencing to try to get a handle on how much more there is. This paper is really just our first hint at what these things are and what they are doing."

###

This research was supported by the U.S. Department of Energy, the Sloan Foundation and the U.S. National Science Foundation.

Once the paper is published, it will be available at: http://dx.doi.org/10.1038/s41467-018-07418-0

Media Contact

Marc Airhart
mairhart@austin.utexas.edu
512-232-1066

 @UTAustin

http://www.utexas.edu 

Marc Airhart | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-018-07418-0

Further reports about: DNA DNA sequencing greenhouse gases microbes microbial microbial communities

More articles from Life Sciences:

nachricht The synthesis of bio-based high-performance polyamide from biogenic residues: A real alternative to crude oil
27.01.2020 | Technische Universität München

nachricht Superfast insights into cellular events
27.01.2020 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

The synthesis of bio-based high-performance polyamide from biogenic residues: A real alternative to crude oil

27.01.2020 | Life Sciences

Superfast insights into cellular events

27.01.2020 | Life Sciences

The 'place' of emotions

27.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>