Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered Brain Cells Explain a Prosocial Effect of Oxytocin

10.10.2014

Oxytocin, the body’s natural love potion, helps couples fall in love, makes mothers bond with their babies, and encourages teams to work together. Now new research at Rockefeller University reveals a mechanism by which this prosocial hormone has its effect on interactions between the sexes, at least in certain situations. The key, it turns out, is a newly discovered class of brain cells.

“By identifying a new population of neurons activated by oxytocin, we have uncovered one way this chemical signal influences interactions between male and female mice,” says Nathaniel Heintz, James and Marilyn Simons Professor and head of the Laboratory of Molecular Biology.


Neurons of love: A newly discovered type of brain cell responds to oxytocin and so regulates female mice’s interest in males, but only when the females are in heat. These star-shaped neurons (above) are shown within a brain region called the medial prefrontal cortex.

The findings, published today in Cell (October 9), had their beginnings in a search for a new type of interneuron, a specialized neuron that relays messages to other neurons across relatively short distances. As part of her doctoral thesis, Miho Nakajima began creating profiles of the genes expressed in interneurons using a technique known as translating ribosome affinity purification (TRAP) previously developed by the Heintz lab and Paul Greengard’s Laboratory of Molecular and Cellular Neuroscience at Rockefeller. Within some profiles from the outer layer of the brain known as the cortex, she saw an intriguing protein: a receptor that responds to oxytocin.

“This raised the question: What is this small, scattered population of interneurons doing in response to this important signal, oxytocin?” Nakajima says. “Because oxytocin is most involved in social behaviors of females, we decided to focus our experiments on females.”

To determine how these neurons, dubbed oxytocin receptor interneurons or OxtrINs, affected behavior when activated by oxytocin, she silenced only this class of interneurons and, in separate experiments, blocked the receptor’s ability to detect oxytocin in some females. She then gave them a commonly used social behavior test: Given the choice between exploring a room with a male mouse or a room with an inanimate object – in this case a plastic Lego block – what would they do?

Generally, a female mouse will go for the non-stackable choice. Legos just aren’t that interesting to rodents. But Nakajima’s results were confusing: Sometimes the mice with the silenced OxtrINs showed an abnormally high interest in the Lego, and sometimes they responded normally.

This led her to suspect the influence of the female reproductive cycle. In another round of experiments, she recorded whether the female mice were in estrus, the sexually receptive phase, or diestrus, a period of sexual inactivity. Estrus, it turned out, was key. Female mice in this phase showed an unusual lack of interest in the males when their receptors were inactivated. They mostly just sniffed at the Lego. There was no effect on mice is diestrus, and there was no effect if the male love interest was replaced with a female. When Nakajima tried the same alteration in males, there was also no effect.

“In general, OxtrINs appear to sit silently when not exposed to oxytocin,” says Andreas Görlich, a postdoc in the lab who recorded the electrical activity of these neurons with and without the hormone. “The interesting part is that when exposed to oxytocin these neurons fire more frequently in female mice than they do in male mice, possibly reflecting the differences that showed up in the behavioral tests.”

“We don’t yet understand how, but we think oxytocin prompts mice in estrus to become interested in investigating their potential mates,” Nakajima says. “This suggests that the social computation going on in a female mouse’s brain differs depending on the stage of her reproductive cycle.”

Oxytocin has similar effects for humans as for mice, however, it is not yet clear if the hormone influences the human version of this mouse interaction, or if it works through a similar population of interneurons. The results do, however, help explain how humans, mice and other mammals respond to changing social situations, Heintz says.

“Oxytocin responses have been studied in many parts of the brain, and it is clear that it, or other hormones like it, can impact behavior in different ways, in different contexts and in response to different physiological cues,” he says. “In a general sense, this new research helps explain why social behavior depends on context as well as physiology.”

Contact Information

Zach Veilleux
212-327-8982
newswire@rockefeller.edu

Zach Veilleux | newswise

Further reports about: BRAIN Cells Lego Molecular Oxytocin Rockefeller female mice hormone interesting neurons receptor social behavior

More articles from Life Sciences:

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

nachricht Gene mutation in the chloride channel triggers rare high blood pressure syndrome
17.10.2019 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

17.10.2019 | Physics and Astronomy

Creating miracles with polymeric fibers

17.10.2019 | Physics and Astronomy

Synthetic cells make long-distance calls

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>