Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of how cells form tunnels may help in treating wounds, tumors

27.05.2019

A simple slice of the finger sends a complex series of interactions between types of cells into motion. Two types of cells in particular, called macrophages and fibroblasts, work together to clean up and repair the fibers destroyed by the cut.

As they do so, they influence each other, they influence the microscopic environment around them, and they are influenced by that reaction -- all in the quiet pursuit of healing the wound.


A rendering of a tunnel made in a co-culture with macrophages and fibroblasts.

Credit: Virginia Tech

But little is known about these environments and how macrophages and fibroblasts assist or inhibit each other when they move through a fibrous and interconnected tissue environment. Researchers at Virginia Tech recently published a study chronicling previously unknown connections and influences between these cells and their environments -- an advancement that may help with development of biomedical devices that respond more effectively to wounds or tumors.

"A major aspect of our research is that it just really illustrates how complex all these different components are going on inside a person's body," said Andrew Ford, a Ph.D. student in chemical engineering and first author of the paper.

The insight gained by the team's research could guide the design of biomedical solutions for attacking tumors or treating wounds faster by manipulating the environment of the macrophages and fibroblasts.

While applications are already being explored using these ideas, the recently published research provides validation in addition to a closer look at the interactions between the cells and the variables of their environment.

Macrophages and fibroblasts exist in humans' connective tissue, which is found underneath the outer layer of skin. This connective tissue forms a space, the extracellular matrix, which provides structural support for other tissues in the body.

Within this matrix, the fibroblasts exist to secrete proteins that build up and repair the connective tissue or break apart the matrices to help dissolve proteins and enable movement. Macrophages, however, tend to go on the attack against material that is foreign or appears to be in the wrong place.

When working together, fibroblasts form long, 3D tunnels, which are then used by macrophages to move.

In the instance of a wound or cut to the finger, macrophages activate and go on the offensive, gobbling up the tissues displaced from the cut. Meanwhile, the fibroblasts work quickly to secrete protein and repair the damaged area.

In the absence of fibroblasts, the researchers found that macrophages were unable to move when the fibrous environment was very densely connected. When operating in comparatively looser fibers, the fibroblasts aligned fibers in a way that produced tracks for the macrophages to follow.

"This study provides a fundamental understanding on how these two cell types work with each to move in an interconnected tissue structure," said Padma Rajagopalan, the Robert E. Hord Jr. Professor of Chemical Engineering and program director of Interdisciplinary Graduate Education Program on Computational Tissue Engineering.

Fibroblasts used chemical and mechanical processes to form tunnels and align fibers. In their study, the researchers showed that chemical processes may have played a more significant role in the formation of tunnels than mechanical processes.

Both cells worked together to clear away debris that resulted from the tunnel formation, showing a coordination between these two cells as they move in a tissue-like structure. Together, the two cells, guided by the extracellular matrix conditions they exist in, can either assist or inhibit each other.

"It's this whole cascading cycle," Ford said.

The manipulation of the environment around these cells could lead to breakthroughs in treatments for wounds and tumors -- especially tumors within lung and breast tissues, which most closely resemble the fiber conditions in the experimental setup.

Ford and colleague Sophia Orbach, a Ph.D. student in chemical engineering, completed this research in the lab of and under the direction of Rajagopalan.

The research was funded by the National Science Foundation, with additional support provided by the Virginia Tech Institute for Critical Technology and Applied Science.

Media Contact

Lindsey Haugh
jangus@vt.edu
540-231-2476

 @vtnews

http://www.vtnews.vt.edu

Lindsey Haugh | EurekAlert!
Further information:
https://vtnews.vt.edu/articles/2019/05/eng-celltunnelsresearch.html

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>