Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment strategies for chronic kidney disease from the animal kingdom

16.02.2018

The field of biomimetics offers an innovative approach to solving human problems by imitating strategies found in nature. Medical research could also benefit from biomimetics, as a group of international experts from various fields, including a wildlife veterinarian and wildlife ecologists from Vetmeduni Vienna, point out using the example of chronic kidney disease. In future research, they intend to study the mechanisms that protect the muscles, organs and bones of certain animals during extreme conditions such as hibernation. The possibilities were published in Nature Reviews.

Through certain genetic modifications, the process of evolution has resulted in a great variety of adaptations to different environments in the animal kingdom. Many species have developed fascinating mechanisms that provide resistance to disease or help protect their cells against ageing and oxidative stress in extreme conditions. It would therefore make sense to investigate these mechanisms in other species and adapt the insights gained to develop new strategies in the field of human medicine.


Biomimetics offers an innovative approach to solving human problems by imitating strategies of for example hibernators like bears found in nature.

Georg Rauer

An increased focus on biomimetics, the field of research that studies this approach, could lead to a medical breakthrough in the treatment of chronic kidney disease. An international, interdisciplinary research collaboration, including scientists from the Research Institute of Wildlife Ecology, has now provided an initial overview of which animal mechanisms could be useful for the development of new therapeutic approaches to this globally spreading disease.

Solutions sought for chronic kidney disease

Physical adaptations that are of interest to biomimetics include the outstanding longevity of naked mole rats, for example, or the ability to survive extreme conditions like hibernation. “Biomimetics attempts to copy strategies that have already been tried and perfected by nature over thousands of years,” explains Johanna Painer from the Department of Integrative Biology and Evolution.

Painer, in an international collaboration with experts from various different fields, researches which of these elements from the animal kingdom could be applied to human health. “We are comparing examples from human and veterinary medicine as well as from the field of biology to more quickly learn about the development of certain problems and then minimise them in the future,” the researcher says.

One of these problems for which solutions may be found in the animal kingdom is chronic kidney disease. This disease, which is becoming increasingly prevalent worldwide, is associated with many complications, such as cardiovascular disease, osteoporosis, muscle wasting and premature ageing. But kidney disease is also a problem in the animal kingdom. Domestic felines and wild cats are quite frequently affected by chronic kidney disease. “A possible cause is the high meat consumption and the resulting changes of the bacteria in the intestine,” says Painer. Other animals, like the common vampire bat or hibernators like the bear, have developed mechanisms that project them against the disease.

Future studies should investigate the mechanisms which, on the one hand, cause the disease in animals and, on the other hand, are responsible for certain protective effects. “Studies of felids may provide information on links between red meat consumption, gut microbiota and kidney disease. Studies of hibernating bears could help identify new strategies to treat and prevent complications such as muscle wasting, pressure ulcers, thrombosis and osteoporosis during longer periods of bedriddenness,” concludes Painer. New possibilities of organ preservation may also be found.

The advantage offered by biomimetics lies in its interdisciplinary nature. The collaboration between nephrologists – these are specialists in kidney disease and high blood pressure – and experts from other fields, such as veterinary medicine, zoology, molecular biology, anthropology and ecology, could introduce a novel approach for improving human health and help to find new treatment strategies for chronic kidney disease. “Collaboration between various disciplines creates a synergetic effect that may result in the discovery of many novel therapeutic approaches. We should make increased use of such collaboration in the future,” says Painer.

Service:
The article “Novel treatment strategies for chronic kidney disease: insights from the animal kingdom” by Peter Stenvinkel, Johanna Painer, Makoto Kuro-o, Miguel Lanaspa, Walter Arnold, Thomas Ruf, Paul G. Shiels and Richard J. Johnson was published in Nature Reviews.
https://www.nature.com/articles/nrneph.2017.169

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. The Vetmeduni Vienna plays in the global top league: in 2017, it occupies the excellent place 8 in the world-wide Shanghai University veterinary in the subject "Veterinary Science". http://www.vetmeduni.ac.at

Scientific Contact:
Johanna Painer
Unit of Conservation Medicine
Research Institute of Wildlife Ecology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-7251
johanna.painer@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

https://www.vetmeduni.ac.at/en/infoservice/presseinformation/presse-releases-201...

Mag.rer.nat. Georg Mair | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Cohesin - a molecular motor that folds our genome
22.11.2019 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht Chemists create new route to PHAs: naturally degradable bioplastics
22.11.2019 | Colorado State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Cohesin - a molecular motor that folds our genome

22.11.2019 | Life Sciences

Magnesium deprivation stops pathogen growth

22.11.2019 | Health and Medicine

Detecting mental and physical stress via smartphone

22.11.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>