Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Transport Mechanisms Gain Access To Brain

19.02.2016

Three-year key project receives 560,000 euros in funding

Researchers at the Institute of Pharmacy and Molecular Biotechnology of Heidelberg University are exploring new approaches to the treatment of diseases of the central nervous system such as Alzheimer's and brain tumours. In collaboration with a research team from the USA, Prof. Dr. Gert Fricker in the field of pharmaceutical technology and neurobiologist Prof. Dr. Ulrike Müller are developing transport systems that can penetrate the blood-brain barrier to "ferry" certain agents into the brain. The Else Kröner-Fresenius Foundation is funding the three-year key project with approximately 560,000 euros. Research work is scheduled to begin in April 2016.


The blood-brain barrier, which separates the central nervous system from circulating blood, is formed by the vascular walls of the cerebral capillaries and allows the free passage of only a few nutrients. The barrier is virtually impermeable especially to macromolecules like proteins, DNA and RNA. Yet it is precisely these molecules, known as biologicals, that Prof. Fricker indicates are highly interesting for treating Alzheimer's and aggressive brain tumours, the glioblastomas.

His working group has now developed special polymer nanoparticles with a modified surface that enables them to specifically dock onto and permeate the blood-brain barrier, after which they dissolve in the brain. Prof. Fricker explains that these particles can be loaded with low molecular agents, i.e., substances of low molecular weight. The particles then transport the otherwise disallowed substances into the central nervous system, where they reach the therapeutically necessary concentrations.

The underlying concept is now being applied to biologicals provided by Prof. Müller and her colleague Prof. Dr. Olivia Merkel of Wayne State University Detroit (USA). Ulrike Müller specialises in Alzheimer’s research. The Heidelberg neurobiologists and her working group supply the peptide APPsα, which protects the nerve cells and acts as an antagonist to the toxic ß amyloid. The ß amyloid deposits are thought to be one of the main causes of Alzheimer’s disease. Olivia Merkel and her research team are supplying the so-called small interfering RNA molecules. These short molecules of ribonucleic acid help turn off the expression of certain genes in brain tumours.

The charitable Else Kröner-Fresenius Foundation promotes the advancement of medical research. The foundation supports key projects with the potential to make fundamental and groundbreaking discoveries that could impact an entire field of research.

Contact:
Prof. Dr. Gert Fricker and Prof. Dr. Ulrike Müller
Institute of Pharmacy and Molecular Biotechnology
Phone: +49 6221 54-8336 (Fricker) and -6717 (Müller)
gert.fricker@uni-hd.de, u.mueller@urz.uni-hd.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.ipmb.uni-heidelberg.de/phazt/abteilung
http://www.ipmb.uni-heidelberg.de/bioinfo-fkt_gen/mueller

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>