Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool better protects beachgoers from harmful bacteria levels

11.06.2015

Scientists offer more accurate health risk prediction model to better inform beach closure decisions

An international team, led by researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, has developed a new, timelier method to identify harmful bacteria levels on recreational beaches. The new model provides beach managers with a better prediction tool to identify when closures are required to protect beachgoers from harmful contaminates in the water.


This infographic shows a microscopic view of beach water.

Credit: Feng, et. al.

"The development of this new model has allowed us, for the first time, to estimate contamination levels on beaches subject to nonpoint source pollution, in particular from beach sand and runoff from storms," said the study's authors.

The new method provides beach health managers with an easily accessible computer model to predict harmful bacteria levels from all potential pollution sources. The team optimized and validated their model using a 10-day monitoring dataset from the popular Virginia Beach in Miami, Florida. The predictive model uses information on waves, tides, rainfall and solar radiation to more accurately predict harmful bacteria concentration and movement along the shore allowing for improved beach management decision-making.

Federal and state laws require water monitoring of fecal indicator bacteria, such as enterococci and fecal coliform, at recreational beaches to protect beachgoers from harmful water contamination levels. Excess levels of these harmful bacteria prompt beach advisories and closures to minimize human health risks. Water contamination from fecal indicator bacteria can result from "point-source" pollution, such as a sewage outfall, or "nonpoint source" pollution from storm-water runoff, or animal and human inputs.

Current methods assess fecal bacteria contamination levels by direct sampling of water from beaches, as well as by using complex computer modeling. Direct sampling methods requires a one-day laboratory analysis to access the health risk to humans at a particular beach. Therefore, a 24 to 48 hours wait period after sampling is required before any beach closure or advisory is issued. In addition, the current computer-based model requires high computing power, which is often inaccessible to beach closure decision managers, and can only predict contaminates from known sources of pollution, such as sewage outfalls.

The National Science Foundation-funded study, titled "A predictive model for microbial counts on beaches where intertidal sand is a primary source," was published in the May 15 issue of the journal Marine Pollution Bulletin. The co-authors include: UM Rosenstiel School alumnus Zhixuan Feng of Woods Hole Oceanographic Institution; Ad Renier, Brian K. Haus, and John D. Wang of the UM Rosenstiel School of Marine and Atmospheric Science; Helena M. Solo-Gabriele of the UM School of Engineering; Lora E. Fleming of the university of Exeter Medical School. NSF Awards: OCE-0432368, OCE-0911373, OCE-1127813

###

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Life Sciences:

nachricht Chemists create new route to PHAs: naturally degradable bioplastics
21.11.2019 | Colorado State University

nachricht Scientists first to develop rapid cell division in marine sponges
21.11.2019 | Florida Atlantic University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>