Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapy for aggressive blood cancer discovered

13.02.2019

Researchers at the Vetmeduni Vienna and the Ludwig Boltzmann Institute for Cancer Research have identified a new therapeutic strategy for Acute Myeloid Leukemia (AML), the most common form of acute leukemia. They found that the activity of the mutated oncogenic protein C/EBPα is dependent on a functional epigenetic helper, the MLL1 histone methyltransferase complex. Laboratory tests clearly showed that functional perturbation of the MLL1 complex led to death of AML cells with C/EBPα mutations. Inhibitor treatment released the differentiation block of cancer cells and restored normal maturation of blood cells.

Acute myeloid leukemia (AML) is the most common form of acute leukemia. It is characterized by an increase of malignant myeloid progenitor cells at the expense of mature blood cells.


Only twenty-five percent of all AML patients survive five years beyond the initial diagnosis. Therefore there is an urgent need to deepen the knowledge about this form of blood cancer and to develop new therapeutic approaches.

A study carried out by researchers at the Ludwig Boltzmann Institute for Cancer Research, the Vetmeduni Vienna and the Medical University Vienna has now identified a possible approach for the treatment of AML patients, which carry a mutated, oncogenic isoform of the protein C/EBPα.

According to the results published in Leukemia, the interaction of the mutated protein with an epigenetic regulator, the so-called MLL1 complex, represents a specific vulnerability of AML cells with CEBPA mutations. If the MLL1 complex was functionally inhibited, AML cells underwent cell death. Via targeted inhibition of MLL1, the cancer-associated block in normal blood cell maturation could potentially be released in affected AML patients.

Focusing on the malignant isoform of an important factor in blood development

The transcription factor CCAAT/enhancer binding protein alpha C/EBPα, is an important regulator of blood development, as it controls critical steps in the maturation of blood cells. However, in ten to fifteen percent of all AML patients, the CEBPA gene harbors mutations that prevent the formation of the correct protein isoform.

"In AML patients, most mutations occur in the N-terminal part of the CEBPA gene. This leads to the production of a shortened C/EBPα protein, the isoform p30, which is responsible for keeping cells in an immature state and can thus trigger leukemia", explains Luisa Schmidt, the first author of the study, whose work was funded by a fellowship from the Austrian Academy of Sciences (DOC).

The oncogenic protein variant C/EBPα p30, which is over-produced as a result of the mutation, makes use of epigenetic mechanisms to control gene expression in leukemia cells.

Oncogenic protein variant requires functional epigenetic regulator complex

It is known that epigenetic processes can control the expression of genes. It has also been shown that the C/EBPα p30 isoform uses these processes to regulate gene expression patterns of leukemia cells. This oncogenic variant binds to the promoters of certain genes and recruits chromatin-modifying complexes, including histone methyltransferases. One of these interaction partners is the MLL1 complex, which is required for transcriptional activation and has been shown to be critical for the maintenance of hematopoietic stem and progenitor cells.

"Using a combination of biochemical, genetic and pharmacological approaches, we have now been able to show that the MLL1 histone methyltransferase complex is a critical vulnerability in AML with CEBPA mutations", says Schmidt. Global studies of protein-DNA interactions showed that the binding pattern of the C/EBPα p30 isoform strongly overlap with that of MLL1. This suggests an interaction and cooperation of these two factors, which was confirmed by additional biochemical experiments.

Targeting of the MLL1 complex function by CRISPR/Cas9-mediated mutagenesis of the MLL1 protein further demonstrated that the growth of AML cells with CEBPA mutations depends on the correct assembly and chromatin anchoring of the MLL1 complex.

In accordance with these results, AML cells with CEBPA mutations were highly sensitive to pharmacological inhibition of the MLL1 complex by specific small-molecule inhibitors.

MLL1 complex inhibition impaired proliferation and caused death of AML cells with CEBPA mutations. Further, treatment of CEBPA-mutated AML cells with MLL1 complex inhibitors reversed the differentiation block of cancer cells and restored normal maturation of blood cells.

Florian Grebien, head of the study at the Ludwig Boltzmann Institute for Cancer Research and at Vetmeduni Vienna, is optimistic, "The result that C/EBPα p30 requires a functional MLL1 complex to control oncogenic gene expression programs reveals a high sensitivity of CEBPA- mutated AML to the inhibition of the MLL1 complex function. These results broaden our understanding of CEBPA-mutated AML and identify the MLL1 complex as a potential therapeutic target for this disease".

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. The Vetmeduni Vienna plays in the global top league: in 2018, it occupies the excellent place 6 in the world-wide Shanghai University veterinary in the subject "Veterinary Science". http://www.vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
E georg.mair@vetmeduni.ac.at

Wissenschaftliche Ansprechpartner:

Florian Grebien
Institute for Medical Biochemistry
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4200
E Florian.Grebien@vetmeduni.ac.at

and

Luisa Schmidt
Institute for Medical Biochemistry
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4202
E schmidtl@staff.vetmeduni.ac.at

Originalpublikation:

The Article "CEBPA-mutated leukemia is sensitive to genetic and pharmacological targeting of the MLL1 complex" from Luisa Schmidt, Elizabeth Heyes, Lisa Scheiblecker, Thomas Eder, Giacomo Volpe, Jon Frampton, Claus Nerlov, Peter Valent, Jolanta Grembecka and Florian Grebien was published in Leukemia. https://www.nature.com/articles/s41375-019-0382-3

Weitere Informationen:

https://www.vetmeduni.ac.at/en/infoservice/press-releases/press-releases-2019/ne...

Mag. Georg Mair | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>