Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology will create brain wiring diagrams

12.01.2018

Technique allows for maps of the neural connections of entire insect brains, which was previously not possible with other methods

The human brain is composed of billions of neurons wired together in intricate webs and communicating through electrical pulses and chemical signals. Although neuroscientists have made progress in understanding the brain's many functions--such as regulating sleep, storing memories, and making decisions--visualizing the entire "wiring diagram" of neural connections throughout a brain is not possible using currently available methods. But now, using Drosophila fruit flies, Caltech researchers have developed a method to easily see neural connections and the flow of communications in real time within living flies. The work is a step forward toward creating a map of the entire fly brain's many connections, which could help scientists understand the neural circuits within human brains as well.


The TRACT method allows for the identification of neurons connected by synapses in a brain circuit. This image shows the olfactory receptor neurons (red) activating the production of a green protein in their synaptically-connected downstream partners.

Credit: Courtesy of the Lois Laboratory

A paper describing the work appears online in the December 12 issue of eLife. The research was done in the laboratory of Caltech research professor Carlos Lois.

"If an electrical engineer wants to understand how a computer works, the first thing that he or she would want to figure out is how the different components are wired to each other," says Lois. "Similarly, we must know how neurons are wired together in order to understand how brains work."

... more about:
»fly »neural connections »neurons »proteins »synapses

When two neurons connect, they link together with a structure called a synapse, a space through which one neuron can send and receive electrical and chemical signals to or from another neuron. Even if multiple neurons are very close together, they need synapses to truly communicate.

The Lois laboratory has developed a method for tracing the flow of information across synapses, called TRACT (Transneuronal Control of Transcription). Using genetically engineered Drosophila fruit flies, TRACT allows researchers to observe which neurons are "talking" and which neurons are "listening" by prompting the connected neurons to produce glowing proteins.

With TRACT, when a neuron "talks"--or transmits a chemical or electrical signal across a synapse--it will also produce and send along a fluorescent protein that lights up both the talking neuron and its synapses with a particular color. Any neurons "listening" to the signal receive this protein, which binds to a so-called receptor molecule--genetically built-in by the researchers--on the receiving neuron's surface. The binding of the signal protein activates the receptor and triggers the neuron it's attached to in order to produce its own, differently colored fluorescent protein. In this way, communication between neurons becomes visible. Using a type of microscope that can peer through a thin window installed on the fly's head, the researchers can observe the colorful glow of neural connections in real time as the fly grows, moves, and experiences changes in its environment.

Many neurological and psychiatric conditions, such as autism and schizophrenia, are thought to be caused by altered connections between neurons. Using TRACT, scientists can monitor the neuronal connections in the brains of hundreds of flies each day, allowing them to make comparisons at different stages of development, between the sexes, and in flies that have genetic mutations. Thus, TRACT could be used to determine how different diseases perturb the connections within brain circuits. Additionally, because neural synapses change over time, TRACT allows the monitoring of synapse formation and destruction from day to day. Being able to see how and when neurons form or break synapses will be critical to understanding how the circuits in the brain assemble as the animal grows, and how they fall apart with age or disease.

TRACT can be localized to focus in on the wiring of any particular neural circuit of interest, such as those that control movement, hunger, or vision. Lois and his group tested their method by examining neurons within the well-understood olfactory circuit, the neurons responsible for the sense of smell. Their results confirmed existing data regarding this particular circuit's wiring diagram. In addition, they examined the circadian circuit, which is responsible for the waking and sleeping cycle, where they detected new possible synaptic connections.

TRACT, however, can do more than produce wiring diagrams. The transgenic flies can be genetically engineered so that the technique prompts receiving neurons to produce proteins that have a function, rather than colorful proteins that simply trace connections.

"We could use functional proteins to ask, 'What happens in the fly if I silence all the neurons that receive input from this one neuron?'" says Lois. "Or, conversely, 'What happens if I make the neurons that are connected to this neuron hyperactive?' Our technique not only allows us to create a wiring diagram of the brain, but also to genetically modify the function of neurons in a brain circuit."

Previous methods for examining neural connections were time consuming and labor intensive, involving thousands of thin slices of a brain reconstructed into a three-dimensional structure. A laboratory using these techniques could only yield a diagram for a single, small piece of fruit-fly brain per year. Additionally, these approaches could not be performed on living animals, making it impossible to see how neurons communicated in real time.

Because the TRACT method is completely genetically encoded, it is ideal for use in laboratory animals such as Drosophila and zebrafish; ultimately, Lois hopes to implement the technique in mice to enable the neural tracing of a mammalian brain. "TRACT is a new tool that will allow us to create wiring diagrams of brains and determine the function of connected neurons," he says. "This information will provide important clues towards understanding the complex workings of the human brain and its diseases."

###

The paper is titled "Tracing neuronal circuits in transgenic animals by transneuronal control of transcription (TRACT)." Other Caltech coauthors include graduate students Ting- Hao Huang and Antuca Callejas; AMGEN undergraduate visiting scholar Peter Niesman; Khorana undergraduate visiting scholar Deepshika Arasu; research technicians Aubrie De La Cruz and Daniel Lee; and Elizabeth Hong (BS '02), the Clare Boothe Luce Assistant Professor of Neuroscience. Funding was provided by BRAIN award UO1 MH109147 from the National Institutes of Health.

Media Contact

Lori Dajose
ldajose@caltech.edu
626-658-0109

 @caltech

http://www.caltech.edu 

Lori Dajose | EurekAlert!

Further reports about: fly neural connections neurons proteins synapses

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>