Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique visually depicts how cancer cells grow and spread in colon tissue

02.12.2019

Even before cancer is detectable, glow-in-the-dark cells show mutations driving malignancy

Duke Cancer Institute researchers have observed how stem cell mutations quietly arise and spread throughout a widening field of the colon until they eventually predominate and become a malignancy.


High magnification image of fluorescent intestinal stem cells. Each fluorescent color is used as a barcode to visualize human colon cancer-causing mutations in mice.

Credit: Duke Health

Using an innovative modeling system in mice, the researchers visually tagged colon cancer mutations by causing stem cells to glow.

Mutations found in colon cancer were then visualized in the animals, illuminating a sort of tournament-to-the-death underway in the intestine in which one or another mutation prevailed over the others to become the driving force of a malignancy.

"This study provides new insight into the previously invisible process in which mutant precancerous stem cells spread throughout the colon and seed cancer," said Joshua Snyder, Ph.D., assistant professor in the departments of Surgery and Cell Biology at Duke and corresponding and co-senior author of a study publishing online Dec. 2 in the journal Nature Communications.

"Our technique sets a firm foundation for testing new therapies that interrupt this early, pre-malignant process. We hope to one day target and eliminate these stealth precancerous cells to prevent cancer," Snyder said.

Snyder and colleagues -- including co-senior author H. Kim Lyerly, M.D., George Barth Geller Professor at Duke ¬-- applied the molecular dyeing technique in a new way, tagging several common colon cancer mutations in the stem cells of a single tumor to create a fluorescent barcode.

When transferred to a mouse, the rainbow of fluorescent stem cells could be visually tracked, revealing the cellular and molecular dynamics of pre-cancerous events.

In this way, the researchers found key differences in how the intestinal habitats common to babies and adults grow pre-cancerous fields of mutant cells. At a critical period, newborns are sensitive to the effects of mutations within intestinal stem cells. This insidiously seeds large fields of premalignant mutated cells throughout the intestine -- a process called field cancerization -- that dramatically increases cancer risk. These fields of mutated cells can grow and spread for years without being detected by current screening technologies; often, they remain harmless, but under proper conditions, can rapidly become cancerous later in adults.

The researchers also observed that some colon cancer mutations found in patients can lead to a striking increase in the fertility of the environment surrounding precancerous fields. Ultimately, this leads to the rapid spread of fields throughout the intestine, with lethal consequences.

Certain common mutations that arise from external sources, such as an injury or an environmental exposure, could also disrupt the environment surrounding the stem cell and lead to the rapid growth and spread of precancerous fields. These occurrences can be especially lethal in adults and occur much more rapidly than previously expected - as if dropping a match on a drought-stricken forest.

"Field cancerization has been suggested to be the defining event that initiates the process of cancer growth, including cancers of the breast, skin and lung," Snyder said. "Our technique allows us to model how premalignant cells compete and expand within a field by simple fluorescent imaging, potentially leading to earlier diagnosis and treatment."

Snyder said additional studies are underway using the fluorescent barcoding to view the cancer fields in breast cancer, aiming to learn more about when a pre-cancerous condition known as ductal carcinoma in situ is driven by malignant vs. benign mutations.

In addition to Snyder and Lyerly, study authors include Peter G. Boone, Lauren K. Rochelle, Veronica Lubkov, Wendy L. Roberts, P.J. Nicholls, Cheryl Bock, Mei Lang Flowers, Richard J. von Furstenberg, Joshua D. Ginzel, Barry R. Stripp, Pankaj Agarwal, Alexander D. Borowsky, Robert D. Cardiff, Larry S. Barak and Marc G. Caron.

###

The work was supported by the National Cancer Institute (512-CA100639-10, 1K22CA212058, R21CA173245, 1R33CA191198, NICHD 5T32HD040372), Sage Biosciences (3U24CA209923-01S1), the Department of Defense (W81XWH-12-1-0447) and Duke Surgery.

Media Contact

Sarah Avery
sarah.avery@duke.edu
919-660-1306

 @DukeHealth

http://dukehealthnews.org 

Sarah Avery | EurekAlert!

Further reports about: cancer cells colon cancer malignancy precancerous stem cells

More articles from Life Sciences:

nachricht Fine-tuning gene expression during stress recovery
02.12.2019 | Hokkaido University

nachricht The coldest reaction
02.12.2019 | Harvard University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Fight diabetes with exercise

02.12.2019 | Life Sciences

Improving Tuberculosis Screening in Remote Areas

02.12.2019 | Health and Medicine

Big Data makes intensive care better

02.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>