Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could make captured carbon more valuable

15.12.2017

Scientists developed an efficient process for turning captured carbon dioxide into syngas, a mixture of H2 and CO that can be used to make fuels and chemicals

Carbon capture could help the nation's coal plants reduce greenhouse gas emissions, yet economic challenges are part of the reason the technology isn't widely used today. That could change if power plants could turn captured carbon into a useable product.


The electrolysis setup that could allow efficient production of syngas from captured carbon.

Credit: Idaho National Laboratory

Scientists at the U.S. Department of Energy's Idaho National Laboratory have developed an efficient process for turning captured carbon dioxide into syngas, a mixture of H2 and CO that can be used to make fuels and chemicals. The team has published its results in Green Chemistry, a publication of the Royal Society of Chemistry .

Traditional approaches for reusing the carbon from CO2 involve a reduction step that requires high temperatures and pressures. At lower temperatures, the CO2 doesn't stay dissolved in water long enough to be useful. The process developed at INL addresses this challenge by using specialized liquid materials that make the CO2 more soluble and allow the carbon capture medium to be directly introduced into a cell for electrochemical conversion to syngas.

"For the first time it was demonstrated that syngas can be directly produced from captured CO2 - eliminating the requirement of downstream separations," the researchers wrote in the Green Chemistry paper.

The newly described process uses switchable polarity solvents (SPS), liquid materials that can shift polarity upon being exposed to a chemical agent. This property makes it possible to control what molecules will dissolve in the solvent.

In an electrochemical cell, water oxidation occurs on the anode side, releasing O2 gas and hydrogen ions that then migrate through a membrane to the cathode side. There, the hydrogen ions react with bicarbonate (HCO3-, the form in which CO2 is captured in the SPS), allowing the release of CO2 for electrochemical reduction and formation of syngas. Upon the release of CO2, the SPS switches polarity back to a water-insoluble form, allowing for the recovery and reutilization of the carbon capture media.

Luis Diaz Aldana, principal investigator on the experiment, and Tedd Lister, one of the researchers, conduct electrochemical research at INL. In 2015, while having lunch with colleagues Eric Dufek and Aaron Wilson, they hit on the idea of using switchable polarity solvents to turn CO2 into syngas.

The team received Laboratory Directed Research and Development funds in 2017. As promising as the idea was, in the first experiments, too much hydrogen and not enough syngas was being produced. The results improved when the team introduced a supporting electrolyte to increase the ionic conductivity. Adding potassium sulfate increased electrolyte conductivity by 47 percent, which allowed the efficient production of syngas.

When syngas can be produced from captured CO2 at significant current densities, it boosts the process chances for industrial application. Unlike other processes that require high temperatures and high pressures, the SPS-based process showed best results at 25 degrees C and 40 psi.

INL's team has filed a provisional patent and is discussing the approach with a Boston area company involved in electrochemical technology research and development, Lister said.

"It integrates two areas that have been on parallel tracks: carbon capture and sequestration (CCS) and CO2 utilization," said Diaz Aldana. "The problem with CCS has been its economic feasibility. If you can get some extra value out of the CO2 you are capturing, it's a different story."

###

Idaho National Laboratory is one of the U.S. Department of Energy's national laboratories. The laboratory performs work in each of DOE's strategic goal areas: energy, national security, science and environment. INL is the nation's leading center for nuclear energy research and development. Day-to-day management and operation of the laboratory is the responsibility of Battelle Energy Alliance.

See more INL news at http://www.inl.gov. Follow @INL on Twitter or visit our Facebook page at http://www.facebook.com/IdahoNationalLaboratory.

Media Contact

Nicole Stricker
nicole.stricker@inl.gov
208-526-5955

 @INL

http://www.inl.gov 

Nicole Stricker | EurekAlert!

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>