Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could make captured carbon more valuable

15.12.2017

Scientists developed an efficient process for turning captured carbon dioxide into syngas, a mixture of H2 and CO that can be used to make fuels and chemicals

Carbon capture could help the nation's coal plants reduce greenhouse gas emissions, yet economic challenges are part of the reason the technology isn't widely used today. That could change if power plants could turn captured carbon into a useable product.


The electrolysis setup that could allow efficient production of syngas from captured carbon.

Credit: Idaho National Laboratory

Scientists at the U.S. Department of Energy's Idaho National Laboratory have developed an efficient process for turning captured carbon dioxide into syngas, a mixture of H2 and CO that can be used to make fuels and chemicals. The team has published its results in Green Chemistry, a publication of the Royal Society of Chemistry .

Traditional approaches for reusing the carbon from CO2 involve a reduction step that requires high temperatures and pressures. At lower temperatures, the CO2 doesn't stay dissolved in water long enough to be useful. The process developed at INL addresses this challenge by using specialized liquid materials that make the CO2 more soluble and allow the carbon capture medium to be directly introduced into a cell for electrochemical conversion to syngas.

"For the first time it was demonstrated that syngas can be directly produced from captured CO2 - eliminating the requirement of downstream separations," the researchers wrote in the Green Chemistry paper.

The newly described process uses switchable polarity solvents (SPS), liquid materials that can shift polarity upon being exposed to a chemical agent. This property makes it possible to control what molecules will dissolve in the solvent.

In an electrochemical cell, water oxidation occurs on the anode side, releasing O2 gas and hydrogen ions that then migrate through a membrane to the cathode side. There, the hydrogen ions react with bicarbonate (HCO3-, the form in which CO2 is captured in the SPS), allowing the release of CO2 for electrochemical reduction and formation of syngas. Upon the release of CO2, the SPS switches polarity back to a water-insoluble form, allowing for the recovery and reutilization of the carbon capture media.

Luis Diaz Aldana, principal investigator on the experiment, and Tedd Lister, one of the researchers, conduct electrochemical research at INL. In 2015, while having lunch with colleagues Eric Dufek and Aaron Wilson, they hit on the idea of using switchable polarity solvents to turn CO2 into syngas.

The team received Laboratory Directed Research and Development funds in 2017. As promising as the idea was, in the first experiments, too much hydrogen and not enough syngas was being produced. The results improved when the team introduced a supporting electrolyte to increase the ionic conductivity. Adding potassium sulfate increased electrolyte conductivity by 47 percent, which allowed the efficient production of syngas.

When syngas can be produced from captured CO2 at significant current densities, it boosts the process chances for industrial application. Unlike other processes that require high temperatures and high pressures, the SPS-based process showed best results at 25 degrees C and 40 psi.

INL's team has filed a provisional patent and is discussing the approach with a Boston area company involved in electrochemical technology research and development, Lister said.

"It integrates two areas that have been on parallel tracks: carbon capture and sequestration (CCS) and CO2 utilization," said Diaz Aldana. "The problem with CCS has been its economic feasibility. If you can get some extra value out of the CO2 you are capturing, it's a different story."

###

Idaho National Laboratory is one of the U.S. Department of Energy's national laboratories. The laboratory performs work in each of DOE's strategic goal areas: energy, national security, science and environment. INL is the nation's leading center for nuclear energy research and development. Day-to-day management and operation of the laboratory is the responsibility of Battelle Energy Alliance.

See more INL news at http://www.inl.gov. Follow @INL on Twitter or visit our Facebook page at http://www.facebook.com/IdahoNationalLaboratory.

Media Contact

Nicole Stricker
nicole.stricker@inl.gov
208-526-5955

 @INL

http://www.inl.gov 

Nicole Stricker | EurekAlert!

More articles from Life Sciences:

nachricht A Varied Menu
25.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>