Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study exposes negative effects of climate change on Antarctic fish

30.07.2015

Scientists at University of California Davis and San Francisco State University have discovered that the combination of elevated levels of carbon dioxide and an increase in ocean water temperature has a significant impact on survival and development of the Antarctic dragonfish (Gymnodraco acuticeps). The research article was published today in the journal Conservation Physiology.


This is an Antarctic dragonfish (Gymnodraco acuticeps).

Credit: Rob Robbins, US Antarctic Program

The study, which was the first to investigate the response to warming and increased pCO2 (partial pressure of carbon dioxide) in a developing Antarctic fish, assessed the effects of near-future ocean warming and acidification on early embryos of the naked dragonfish, a shallow benthic spawner exclusive to the circumpolar Antarctic. As the formation of their embryos takes longer than many species (up to ten months), this makes them particularly vulnerable to a change in chemical and physical conditions.

The survival and metabolism of the dragonfish embryo was measured over time in two different temperatures and three pCO2 levels over a three-week period, which allowed the researchers to assess potential vulnerability of developing dragonfish to future ocean scenarios. The results showed that a near-future increase in ocean temperature as well as acidification have the potential to significantly alter the physiology and development of Antarctic fish. One of the article's authors, Assistant Professor Anne Todgham, explained that "temperature will probably be the main driver of change, but increases in pCO2 will also alter embryonic physiology, with responses dependent on water temperature."

Professor Todgham went on to say: "Dragonfish embryos exhibited a synergistic increase in mortality when elevated temperature was coupled with increased pCO2 over the course of the three week experiment. While we predictably found that temperature increased embryonic development, altered development due to increased pCO2 was unexpected." These unique findings show that single stressors alone may not be sufficient to predict the effects on early development of fish, as the negative effects of increased pCO2 may only manifest at increased temperatures. They also show that fish may differ from other marine invertebrate embryos in how they respond to pCO2.

The faster development of the embryos in warmer and more acidic waters could be bad news for the dragonfish. Hatching earlier, at the start of the dark winter months when limited food resources are available, has the potential to limit growth during critical periods of development. Furthermore, impacts to survival would reduce numbers of embryos that hatch and could impact dragonfish abundance.

Media Contact

Chloe Foster
chloe.foster@oup.com
44-186-535-3584

 @OxfordJournals

http://www3.oup.co.uk/jnls 

Chloe Foster | EurekAlert!

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Researchers use MRI to predict Alzheimer's disease

20.11.2018 | Medical Engineering

How to melt gold at room temperature

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>