Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New structural data on talin explain self-inhibitory mechanism

  • Defective cellular adhesion plays a central role in cancer and immune reactions
  • Talin is one of the key proteins involved in the machinery of cellular adhesion
  • The entire structure of talin has been determined with the help of cryo-electron microscopy
  • Now the protein’s regulation mechanism can be explained

All complex organisms are made up of cells that are in contact with each other or with structures in intercellular spaces. Cells have contact points on their surface that enable them to maintain physical contact with their environment.

Regulatory mechanism of talin: from the spherical, inhibited state to the elongated and active form

Picture: ©Naoko Mizuno, MPI of Biochemistry

However, these connections are dynamic, not static. A finely regulated process of cellular attachments and detachments is particularly important during cell migration, cell development, immune responses and blood clotting. For this reason, the contact points form an elaborate protein machinery.

Talin and integrin, two key proteins in the cellular adhesion machinery, have been the subject of much research in recent years.

Together with her team, Naoko Mizuno, head of the “Cellular and Membrane Trafficking” Research Group at the Max Planck Institute of Biochemistry, has now elucidated the structure and regulatory mechanism of talin with the help of cryo-electron microscopy.

“Although talin is recognized as key for the cell migration, its regulation was enigmatic as the architecture of the molecule as a whole was unknown,” Mizuno says.

Dirk Dedden, lead author of the study, comments: “We’ve focused on analyzing the protein as a whole. Using a variety of modern biophysical techniques, we’ve discovered which environmental conditions cause the protein to alter its state reversibly.”

Thanks to controllable laboratory conditions, the scientists have now been able to determine the protein’s precise molecular structure by means of cryo-electron microscopy.

Talin, like a mechanical spring, is spherical in shape in its inactive form and oblong in its active state. The researchers have now been able to identify which areas of inactive talin are shielded from the environment in its spherical self-inhibitory state.

This means that neighbouring proteins are unable to interact with the molecule, and the cell itself is unable to adhere to surrounding tissue. In its elongated active form, the molecule acts as a binding platform for neighbouring proteins, which furthermore promotes attachment of the cell to its surrounding structures.

Naoko Mizuno explains: “Given that the cellular adhesion process no longer functions properly in some diseases, notably cancer, our results will hopefully have long-term medical benefits.

Talin is known to activate integrin, and integrin is a well-known target for some anticancer drugs. We hope that an understanding of the regulatory process of the adhesion mechanism will shed light on disease processes and lead to new treatments.”

Wissenschaftliche Ansprechpartner:

Naoko Mizuno, PhD
Cellular and Membrane Trafficking
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried


D. Dedden, S. Schumacher, C. F. Kelley, M. Zacharias, C. Biertümpfel, R. Fässler, N. Mizuno: The architecture of talin1 reveals an autoinhibition 1 mechanism. Cell, September 2019

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie
Further information:

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>