Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New scale for electronegativity rewrites the chemistry textbook

17.01.2019

Electronegativity is one of the most well-known models for explaining why chemical reactions occur. Now, Martin Rahm from Chalmers University of Technology, Sweden, has redefined the concept with a new, more comprehensive scale. His work, undertaken with colleagues including a Nobel Prize-winner, has been published in the Journal of the American Chemical Society.

The theory of electronegativity is used to describe how strongly different atoms attract electrons. By using electronegativity scales, one can predict the approximate charge distribution in different molecules and materials, without needing to resort to complex quantum mechanical calculations or spectroscopic studies.


Electronegativity redefined: A new scale for electronegativity covers the first 96 elements, a marked increase on previous versions.

Credit: Martin Rahm/Chalmers University of Technology


This is a periodic table showing the values of the first 96 elements in the new scale of electronegativity, published in the article in the Journal of the American Chemical Society.

Credit: Martin Rahm/Chalmers University of Technology

This is vital for understanding all kinds of materials, as well as for designing new ones. Used daily by chemists and materials researchers all over the world, the concept originates from Swedish chemist Jöns Jacob Berzelius' research in the 19th century and is widely taught at high-school level.

Now, Martin Rahm, Assistant Professor in Physical Chemistry at Chalmers University of Technology, has developed a brand-new scale of electronegativity.

"The new definition is the average binding energy of the outermost and weakest bound electrons - commonly known as the valence electrons," he explains.

"We derived these values by combining experimental photoionization data with quantum mechanical calculations. By and large, most elements relate to each other in the same way as in earlier scales. But the new definition has also led to some interesting changes where atoms have switched places in the order of electronegativity. Additionally, for some elements this is the first time their electronegativity has been calculated."

For example, compared to earlier scales, oxygen and chromium have both been moved in the ranking, relative to elements closest to them in the periodic table. The new scale encompasses 96 elements, a marked increase from previous versions. The scale now runs from the first element, hydrogen, to the ninety-sixth, curium.

One motivation for the researchers to develop the new scale was that, although several different definitions of the concept exist, each is only able to cover parts of the periodic table. An additional challenge for chemists is how to explain why electronegativity is sometimes unable to predict chemical reactivity or the polarity of chemical bonds.

A further advantage of the new definition is how it fits into a wider framework that can help explain what happens when chemical reactions are not controlled by electronegativity. In these reactions, which can be hard to understand using conventional chemical models, complex interactions between electrons are at work.

What ultimately determines the outcomes of most chemical reactions is the change in total energy.

In the new paper, the researchers offer an equation where the total energy of an atom can be described as the sum of two values. One is electronegativity, and the second is the average electron interaction. The magnitude and character of these values as they change over a reaction reveals the relative importance of electronegativity in influencing the chemical process.

There are endless ways to combine the atoms in the periodic table to create new materials. Electronegativity provides a first important indicator of what can be expected from these combinations.

"The scale is extensive, and I hope it will greatly affect research in chemistry and material science. Electronegativity is routinely used in chemical research and with our new scale a number of complicated quantum mechanical calculations can be avoided. The new definition of electronegativity can also be useful for analysing electronic structures calculated through quantum mechanics, by making such results more comprehensible," says Martin Rahm.

###

Martin Rahm's paper, Electronegativity Seen as the Ground-State Average Valence Electron Binding Energy has been published in the Journal of the American Chemical Society. The work was undertaken together with Roald Hoffmann, Nobel Laureate in Chemistry, from Cornell University, USA, and Tao Zeng at Carleton University in Canada.

For more information, contact:

Martin Rahm
Assistant Professor, Chemistry and Chemical Engineering
Chalmers University of Technology, Sweden
martin.rahm@chalmers.se
+46 31 772 30 50

Media Contact

Joshua Worth
joshua.worth@chalmers.se
46-317-726-379

 @chalmersuniv

http://www.chalmers.se/en/ 

Joshua Worth | EurekAlert!
Further information:
https://www.chalmers.se/en/departments/chem/news/Pages/electronegativity.aspx
http://dx.doi.org/10.1021/jacs.8b10246

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>