Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New record: 3D-printed optical-electronic integration

13.06.2019

Optoelectronic integration offers a promising strategy to simultaneously obtain the merits of electrons and photons when they serve as information carriers, including high-density communication and high-speed information processing, paving the way for the next-generation integrated circuits (ICs).

The ever-increasing demand on bandwidth and information density in ICs call for the micro/nano functional devices capable of being fabricated in three-dimensional (3D) ICs, which is desirable for their improved performance in data processing under lower consumption.


Schematic illustration of an integrated electrically controlled microlaser module for optoelectronic hybrid integration. Briefly, this module is designed to be a thermo-responsive polymer resonator on top of a chip-scale metal heating circuit. The voltage is applied in-plane with the current transport to provide local-area thermal field, which induces the lasing wavelength change of the upper dye-doped microresonators.

Credit: ©Science China Press

In such highly integrated circuits, however, selective electrical modulation of specific micro/nanoscale optical devices, including light sources and waveguides, is a key requirement for yielding more functional and more compact integrated elements, but hindered by the normal used nonlinearity found in electro-optic materials.

Femtosecond laser direct writing (FsLDW), as one of the 3D printing techniques, enables the direct and addressable construction of 3D-integrated optoelectronic devices utilizing organic compounds with two-photon polymerized features.

With doping flexibility, the polymerized microstructures can be readily incorporated with organic dye molecules to produce functional devices, like coherent laser sources. Besides, organic polymers possess excellent responsiveness to external stimuli, including temperature.

Their large thermo-optic coefficient enables the realization of the electrical tuning of resonant wavelength with high efficiency when they are fabricated into microcavity structures.

The incorporation of thermo-responsive polymeric microlaser with underneath electrical microheater in the 3D fabrication manner can be used as an effective hybrid microlaser module with selective electric modulation towards optical-electronic integration.

Very recently, Professor Yong Sheng Zhao's group in the Institute of Chemistry, Chinese Academy of Sciences demonstrated an in situ electrically modulated microlaser module based on 3D-printed dye-doped polymeric microdisks, which is published in Science China Chemistry.

The thermo-optic effect of the polymer matrix enabled the tuning of lasing modes from the microdisk upon heating. The shape designability of FsLDW allows the fabrication of higher-level microstructures to manipulate light signals, including the waveguide coupled microdisks for light remote control and the coupled double-microdisk resonators for laser mode selection. The latter microstructure was further integrated with an underneath electrical microheater.

As a result, the cavity resonant wavelength can be shifted on the basis of resistance heating controlled optical length change through the thermo-optic effect of polymeric matrix material, which enabled an electrical modulation of the output wavelength of the 3D-printed microlaser module.

###

This work was supported financially by the Ministry of Science and Technology of China (Grant No. 2017YFA0204502), and the National Natural Science Foundation of China (Grant Nos. 21533013 and 21790364).

See the article: Liu Y, Lin X, Wei C, Zhang C, Yao J, Zhao YS. 3D-printed optical-electronic integrated devices. Sci. China Chem., 2019, DOI: 10.1007/s11426-019-9503-0. https://doi.org/10.1007/s11426-019-9503-0

Media Contact

Zhao Yong Sheng
yszhao@iccas.ac.cn

http://www.scichina.com/ 

Zhao Yong Sheng | EurekAlert!
Further information:
http://dx.doi.org/10.1007/s11426-019-9503-0

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

Better thermal conductivity by adjusting the arrangement of atoms

19.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>