Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New process in root development discovered

31.07.2018

Scientists uncover communication at the root tip

As the plant root grows, a root cap protects its fragile tip. Every few hours, the old cap is lost and a new one replaces it. This has puzzled scientists: how do cells at the tip know when to die, and how do cells further back know to divide and form a new layer – especially as these cells are several cell rows apart?


Root cap peeling off at the tip of an Arabidopsis root

IST Austria/Ivan Kulik

Researchers at the University of Oslo and the Institute of Science and Technology Austria (IST Austria) have now, partly, solved this communication problem. As they write in today’s edition of Nature Plants, the researchers have, for the first time, observed regular cycles of root tip loss and regrowth in real time. In doing so, they uncovered the signal and receptor that coordinate this process.

Signal and receptor identified

The group of Reidunn Aalen at the University of Oslo, with postdoc and first author Chun-Lin Shi, discovered the signal and receptor that mediate communication at the root tip. They found that cells in the root cap secrete a small peptide, called IDL1. This peptide diffuses through the root tip. Cells at the root apical meristem, which divide to form a new root cap, have a receptor protein, called HSL2, which perceives the signal peptide IDL1. By this mechanism, the outer root cap cells that are shed and the inner cells that divide to replace them communicate.

Loss of root cap observed for first time

Jiri Friml’s group at IST Austria, including former postdoc Daniel von Wangenheim and intern Ivan Kulik, observed, for the first time, how plants shed their root caps. With a laser scanning microscope that was flipped on its side - a method the research group previously developed and that led to the production the winning video in last year’s “Nikon Small World in Motion Competition” as well as to the discovery of a new role of auxin in the response to gravity— was able see root cap loss in real-time over days.

Root cap loss is a slow process – root caps are lost at a rate of about one every 18 hours. “Because root cap loss and replacement is slow, you cannot observe it under a normal microscope set-up”, Jiri Friml explains. With the flipped microscope, Kulik and von Wangenheim could observe root growth over three days and see the periodicity of cell death and root cap peeling, as Jiri Friml describes: “Our vertical microscope set-up and automatic tracking allowed us to observe how root caps are lost in natural conditions. These tools enabled us to see how root cap loss actually happens and how the cells further back divide. “

Friml’s group compared how wild-type Arabidopsis thaliana plants loose and replace their root cap with how this process occurs in mutant plants, provided by the Aalen group. They found that in plants in which communication through IDL1 and HSL2 is disrupted, root cap cells accumulate at the tip rather than peeling off. “When the signaling doesn’t work, the cell death and rebirth is not coordinated and cells hang around much longer at the tip than they should”, Friml explains.

The vertical microscope and TipTracker software developed by Robert Hauschield from the IST Austria imaging facility was essential for this work, Kulik says: “Of course, roots grow. So while you image a root in the confocal microscope, the root tip would eventually grow out of the field of vision. With the TipTracker, the microscope compares the root tip’s location between images and automatically adjusts the objective’s position, so that root tips can be followed even over several days.”

IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas. www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Ivan Kulik
ivan.kulik@ist.ac.at

Originalpublikation:

Shi et al. 2018, The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signaling, Nature Plants, DOI: 10.1038/s41477-018-0212-z

Weitere Informationen:

http://ist.ac.at/en/research/research-groups/friml-group/ Website of Prof. Friml's research group

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: Arabidopsis Plants cell death receptor receptor protein root small peptide

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>