Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New process in root development discovered

31.07.2018

Scientists uncover communication at the root tip

As the plant root grows, a root cap protects its fragile tip. Every few hours, the old cap is lost and a new one replaces it. This has puzzled scientists: how do cells at the tip know when to die, and how do cells further back know to divide and form a new layer – especially as these cells are several cell rows apart?


Root cap peeling off at the tip of an Arabidopsis root

IST Austria/Ivan Kulik

Researchers at the University of Oslo and the Institute of Science and Technology Austria (IST Austria) have now, partly, solved this communication problem. As they write in today’s edition of Nature Plants, the researchers have, for the first time, observed regular cycles of root tip loss and regrowth in real time. In doing so, they uncovered the signal and receptor that coordinate this process.

Signal and receptor identified

The group of Reidunn Aalen at the University of Oslo, with postdoc and first author Chun-Lin Shi, discovered the signal and receptor that mediate communication at the root tip. They found that cells in the root cap secrete a small peptide, called IDL1. This peptide diffuses through the root tip. Cells at the root apical meristem, which divide to form a new root cap, have a receptor protein, called HSL2, which perceives the signal peptide IDL1. By this mechanism, the outer root cap cells that are shed and the inner cells that divide to replace them communicate.

Loss of root cap observed for first time

Jiri Friml’s group at IST Austria, including former postdoc Daniel von Wangenheim and intern Ivan Kulik, observed, for the first time, how plants shed their root caps. With a laser scanning microscope that was flipped on its side - a method the research group previously developed and that led to the production the winning video in last year’s “Nikon Small World in Motion Competition” as well as to the discovery of a new role of auxin in the response to gravity— was able see root cap loss in real-time over days.

Root cap loss is a slow process – root caps are lost at a rate of about one every 18 hours. “Because root cap loss and replacement is slow, you cannot observe it under a normal microscope set-up”, Jiri Friml explains. With the flipped microscope, Kulik and von Wangenheim could observe root growth over three days and see the periodicity of cell death and root cap peeling, as Jiri Friml describes: “Our vertical microscope set-up and automatic tracking allowed us to observe how root caps are lost in natural conditions. These tools enabled us to see how root cap loss actually happens and how the cells further back divide. “

Friml’s group compared how wild-type Arabidopsis thaliana plants loose and replace their root cap with how this process occurs in mutant plants, provided by the Aalen group. They found that in plants in which communication through IDL1 and HSL2 is disrupted, root cap cells accumulate at the tip rather than peeling off. “When the signaling doesn’t work, the cell death and rebirth is not coordinated and cells hang around much longer at the tip than they should”, Friml explains.

The vertical microscope and TipTracker software developed by Robert Hauschield from the IST Austria imaging facility was essential for this work, Kulik says: “Of course, roots grow. So while you image a root in the confocal microscope, the root tip would eventually grow out of the field of vision. With the TipTracker, the microscope compares the root tip’s location between images and automatically adjusts the objective’s position, so that root tips can be followed even over several days.”

IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas. www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Ivan Kulik
ivan.kulik@ist.ac.at

Originalpublikation:

Shi et al. 2018, The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signaling, Nature Plants, DOI: 10.1038/s41477-018-0212-z

Weitere Informationen:

http://ist.ac.at/en/research/research-groups/friml-group/ Website of Prof. Friml's research group

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: Arabidopsis Plants cell death receptor receptor protein root small peptide

More articles from Life Sciences:

nachricht Phagocytes versus killer cells - A closer look into the tumour tissue
21.10.2019 | Universität Duisburg-Essen

nachricht How intestinal cells renew themselves – the role of Klumpfuss in cell differentiation
21.10.2019 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>