Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New probe developed for improved high resolution measurement of brain temperature

21.07.2016

Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury

The brain is the most temperature-sensitive organ in the body. Even small deviations in brain temperature are capable of producing profound effects--including behavioral changes, cell toxicity, and neuronal cell death. The problem faced by researchers and clinicians is how to measure and understand these changes in the brain and how they are influenced by complex biochemical and physiological pathways that may be altered by disease, brain injury or drug abuse.


The optical fiber probe can generate and harness light to detect temperature changes in biological systems.

Research Contact: Stefan Musolino stefan.musolino@adelaide.edu.au Erik Schartner erik.schartner@adelaide.edu.au

In a new paper published in Biomedical Optics Express, from The Optical Society (OSA), Stefan Musolino of the University of Adelaide and the ARC Centre of Excellence for Nanoscale BioPhotonics, Australia, and his colleagues describe a new optical fiber-based probe capable of making pinpoint brain temperature measurements in moving lab animals.

"Within our center we house physicists, chemists, and medical researchers and one of the interests of our center's 'Origin of Sensation' theme is temperature change in the central nervous system," Musolino said. "It is only recently that more studies in my area of research-- drug-induced hyperthermia-- have started looking at changes in brain temperature in addition to changes in core body temperature within drug-treated animals. We wanted to further investigate these drug-induced brain temperature changes using center developed probes in order to develop a better understanding of the mechanisms driving them."

The probe developed by Musolino and his colleagues consists of an optical fiber, sheathed within a protective sleeve and encased within a 4-millimeter-long 25-gauge needle. The end-face of the approximately 2-mm-long probe tip is dipped into molten glass made of tellurite, doped with a small amount of the rare-earth oxide erbium. When inserted into the brain, the color of the light emitted from the erbium ions will vary depending on the temperature of the surrounding tissue; the temperature of that tissue can thus be determined by monitoring the light of these color changes. This method allows for measurements to be performed with a precision of a fraction of a degree (0.1°C).

"The area that can measure temperature is less than 125 micrometers in size," said study co-author Erik Schartner "making it highly spatially precise and able to isolate temperature readings from very small brain areas." The researchers say it is possible to make the temperature-sensing area of the probe tip smaller still -- as small as a few microns across -- by modifying the probe's design.

The probe's immediate application will be to investigate changes in brain temperature within moving lab animals exposed to certain drugs of abuse, such MDMA (or 'ecstasy'). "We will also look at the possible therapeutic properties of the tetracycline antibiotic minocycline and its ability to attenuate the changes in temperature caused by the administration of MDMA," said Musolino. "In the future we will also be looking into combining this probe with other optical sensors in the hopes of developing new optical fiber-based sensing techniques for use in medical science labs that are examining real-word medical problems."

Eventually, a fully developed probe could be used in human brain temperature monitoring after traumatic brain injury, stroke or hemorrhage -- times when the brain is extremely sensitive and small deviations in temperature can lead to additional brain injury.

"Continuous monitoring of brain temperature after brain injury would allow for the effects of hyperthermia management techniques such as anti-pyretics -- drugs that reduces fever -- and hypothermia to be observed and evaluated by clinicians in real time," Musolino said. "These new tools and this deeper understanding will ultimately give us better understanding of the brain and how to more quickly react to brain injury."

###

Paper: Stefan Musolino, Erik P. Schartner, Georgios Tsiminis, Abdallah Salem, Tanya M. Monro, and Mark R. Hutchinson, "Portable optical fiber probe for in vivo brain temperature measurements," Biomed. Opt. Express 7, 3069-3077 (2016). DOI: 10.1364/BOE.7.003069.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by The Optical Society and edited by Christoph Hitzenberger of The Medical University of Vienna. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contact

Rebecca Andersen
RAndersen@osa.org
202-416-1443

 @opticalsociety

http://www.osa.org 

Rebecca Andersen | EurekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>