Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecule shows promise in HIV vaccine design

30.10.2017

A University of Maryland-led study developed a vaccine candidate that spurs animals to produce antibodies against protective sugars of multiple HIV strains

Researchers at the University of Maryland and Duke University have designed a novel protein-sugar vaccine candidate that, in an animal model, stimulated an immune response against sugars that form a protective shield around HIV. The molecule could one day become part of a successful HIV vaccine.


An artist's rendition of HIV (foreground). The knobs (purple) covering the virus are sugar-protein molecules, including gp120, that shield the rest of the virus (pink).

Credit: National Cancer Institute

"An obstacle to creating an effective HIV vaccine is the difficulty of getting the immune system to generate antibodies against the sugar shield of multiple HIV strains," said Lai-Xi Wang, a professor of chemistry and biochemistry at UMD. "Our method addresses this problem by designing a vaccine component that mimics a protein-sugar part of this shield."

Wang and collaborators designed a vaccine candidate using an HIV protein fragment linked to a sugar group. When injected into rabbits, the vaccine candidate stimulated antibody responses against the sugar shield in four different HIV strains. The results were published in the journal Cell Chemical Biology on October 26, 2017.

The protein fragment of the vaccine candidate comes from gp120, a protein that covers HIV like a protective envelope. A sugar shield covers the gp120 envelope, bolstering HIV's defenses. The rare HIV-infected individuals who can keep the virus at bay without medication typically have antibodies that attack gp120.

Researchers have tried to create an HIV vaccine targeting gp120, but had little success for two reasons. First, the sugar shield on HIV resembles sugars found in the human body and therefore does not stimulate a strong immune response. Second, more than 60 strains of HIV exist and the virus mutates frequently. As a result, antibodies against gp120 from one HIV strain will not protect against other strains or a mutant strain.

To overcome these challenges, Wang and his collaborators focused on a small fragment of gp120 protein that is common among HIV strains. The researchers used a synthetic chemistry method they previously developed to combine the gp120 fragment with a sugar molecule, also shared among HIV strains, to mimic the sugar shield on the HIV envelope.

Next, the researchers injected the protein-sugar vaccine candidate into rabbits and found that the rabbits' immune systems produced antibodies that physically bound to gp120 found in four dominant strains of HIV in circulation today. Injecting rabbits with a vaccine candidate that contained the protein fragment without the sugar group resulted in antibodies that primarily bound to gp120 from only one HIV strain.

"This result was significant because producing antibodies that directly target the defensive sugar shield is an important step in developing immunity against the target and therefore the first step in developing a truly effective vaccine," Wang said.

Although the rabbits' antibodies bound to gp120, they did not prevent live HIV from infecting cells. This result did not surprise Wang, who noted that it usually takes humans up to two years to build immunity against HIV and the animal study only lasted two months.

"We have not hit a home run yet," Wang noted. "But the ability of the vaccine candidate to raise substantial antibodies against the sugar shield in only two months is encouraging; other studies took up to four years to achieve similar results. This means that our molecule is a relatively strong inducer of the immune response."

The researchers' next steps will be to conduct longer-term studies in combination with other vaccine candidates, hone in on what areas of gp120 the antibodies are binding to and determine how they can increase the antibodies' effectiveness at neutralizing HIV.

###

Other study co-authors affiliated with the Department of Chemistry and Biochemistry at the University of Maryland include former postdoctoral associate Hui Cai, faculty assistant John Giddens, former postdoctoral associate Jared Orwenyo, assistant research scientist Qiang Yang and graduate student Roushu Zhang.

This work was supported by the National Institutes of Health (Award No. R01AI113896). The content of this article does not necessarily reflect the views of the organization.

The research paper, "Synthetic Three-Component HIV-1 V3 Glycopeptide Immunogens Induce Glycan-Dependent Antibody Responses," Hui Cai et al., was published in the journal Cell Chemical Biology on October 26, 2017.

Media Relations Contact: Irene Ying, 301-405-5204, zying@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Media Contact

Irene Ying
zying@umd.edu
301-405-5204

 @UMDRightNow

http://www.umdrightnow.umd.edu/ 

Irene Ying | EurekAlert!

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>