Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecular blueprint advances our understanding of photosynthesis

15.02.2019

Berkeley Lab research will shed light on the process by which plants convert carbon dioxide into sugar, helping scientists engineer crops that produce sustainable bioproducts including biofuels

Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have used one of the most advanced microscopes in the world to reveal the structure of a large protein complex crucial to photosynthesis, the process by which plants convert sunlight into cellular energy.


The cryo-EM structure of the NAD(P)H dehydrogenase-like complex (NDH). The atomic coordinate model shown as spheres, colored according to the different subunits, in front of an electron micrograph of frozen NDH particles in the background.

Credit: Thomas Laughlin/UC Berkeley and Berkeley Lab


A cartoon schematic of electron transport chain of photosynthesis in which energy from sunlight creates high-energy electrons that are shuttle among various protein complexes. The electron shuttling process is coupled with proton pumps that power ATP formation by ATP synthase. An electron can flow linearly to power NADPH formation or it can be cycled between photosystem I and NDH to boost ATP synthesis.

Credit: Thomas Laughlin/UC Berkeley and Berkeley Lab

The finding, published in the journal Nature, will allow scientists to explore for the first time how the complex functions and could have implications for the production of a variety of bioproducts, including plastic alternatives and biofuels.

"This work will lead to a better understanding of how photosynthesis occurs, which could allow us to improve the efficiency of photosynthesis in plants and other green organisms - potentially boosting the amount of food, and thus biomass, they produce," said lead researcher Karen Davies, a biophysicist at Berkeley Lab. "This is particularly important if you want to produce renewable bioproducts that are cost-effective alternatives to current petroleum-based products."

Discovered decades ago, the protein complex targeted by the researchers, called NADH dehydrogenase-like complex (NDH), is known to help regulate the phase of photosynthesis where the energy of sunlight is captured and stored in two types of cellular energy molecules, which are later utilized to power the conversion of carbon dioxide into sugar. Past investigations revealed that NDH reshuffles the energized electrons moving among other protein complexes in the chloroplast in a way that ensures the correct ratio of each energy molecule is produced. Furthermore, NDH of cyanobacteria performs several additional roles including increasing the amount of carbon dioxide (CO2) available for sugar production by linking CO2 uptake with electron transfer.

In order for scientists to truly comprehend how NDH executes these important functions, they needed a molecular blueprint indicating the location and connectivity of all the atoms in the complex. This is something that even highly powerful transmission electron microscopy (TEM) technology simply could not provide until very recently.

"Research on this enzyme has been difficult and experimental results confounding for the last 20 years or so because we have lacked complete information about the enzyme's structure," said Davies. "Knowing the structure is important for generating and testing out hypotheses of how the enzyme functions. The resolution we obtained for our structure of NDH has only really been achievable since the commercialization of the direct electron counting camera, developed in collaboration with Berkeley Lab."

Prior to this invention, explained Davies, a staff scientist in Berkeley Lab's Molecular Biophysics and Integrative Bioimaging Division (MBIB), determining the structure of a single molecule could take several years because cryo-TEM imaging relied on film, meaning that each exposure had to be developed and scanned before it could be analyzed. The main limitation, however, was that most images turned out blurry. When you directed a beam of electrons at a molecule, the charged, high-energy particles excited the atoms in the molecule, often making them move at the moment of exposure. This meant that researchers needed to take and process hundreds, if not thousands, of film images in order to get an accurate glimpse of an entire molecule.

The new electron counting camera solves this problem by taking digital movies with an extremely high frame rate, so individual frames can be aligned to eliminate blurring caused by beam-induced particle motion.

In the current study, first author Thomas Laughlin, a UC Berkeley graduate student with a joint appointment at MBIB, isolated NDH complexes from membranes of a photosynthetic cyanobacterium provided by the Junko Yano and Vittal Yachandra Lab in MBIB and imaged them using a state-of-the-art cryo-TEM instrument fitted with the latest direct electron detector. Located on the UC Berkeley campus, the cryo-TEM facility is managed by the Bay Area CryoEM consortium, which is partly funded by Berkeley Lab.

The resulting atom density map was then used to build a model of NDH that shows the arrangement of all the protein subunits of NDH and the most likely position of all the atoms in the complex. By examining this model, Davies' team will be able to formulate and then test hypotheses of how NDH facilitates sugar production by balancing the ratio of the two cellular energy molecules.

"While the structure of NDH alone certainly addresses many questions, I think it has raised several more that we had not even thought to consider before," said Laughlin.

Among the many Berkeley Lab scientists focused on advancing knowledge of fundamental biochemical and biophysical processes, Davies and her staff also use direct electron camera cryo-EM to investigate how variations in the organization of photosynthetic complexes, caused by changes in growth and light conditions, affect the efficiency of photosynthesis. Her project on electron flow in photosynthesis is supported by a five-year DOE Office of Science Early Career Research Program grant that was awarded in 2018.

###

Researchers from the Groupe d'étude des protéines membranaires (GEPROM) at the University of Montréal and McGill University also contributed to this work.

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab's facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Aliyah Kovner
akovner@lbl.gov
510-486-6376

 @BerkeleyLab

http://www.lbl.gov 

Aliyah Kovner | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41586-019-0921-0

More articles from Life Sciences:

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

nachricht Converting biomass by applying mechanical force
15.03.2019 | University of Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

A peek into lymph nodes

15.03.2019 | Medical Engineering

Novel methods for analyzing neural circuits for innate behaviors in insects

15.03.2019 | Life Sciences

Converting biomass by applying mechanical force

15.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>