Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Model to study HIV latency in brain cells

18.06.2015

Over 35 million people worldwide are currently infected by HIV. Antiviral therapies can keep the virus from multiplying. However, no drug can cure infection so far, because various cell types continue to carry the virus in a latent, i.e. quiescent, state. Scientists of Helmholtz Zentrum München have now established a model for latent HIV infection of brain cells. The researchers used this model to identify various compounds that affect latency of the virus in the brain. This study was published in the journal AIDS.

“Chronic infection is caused by long-lived cells with resting viral genomes that are activated by different factors,” explained Prof. Dr. Ruth Brack-Werner of the Institute of Virology. “These so-called latently infected cells occur in the blood and in the brain, among others.


Picture: Prof. Dr. Ruth Brack-Werner and Dr. Martha Schneider

Source: HMGU

HIV latency in the brain is particularly difficult to investigate,” she added. Her research group is studying HIV persistence in a very important type of brain cells called astrocytes. The human brain contains billions of them. The many functions of astrocytes include protecting the brain from injury and harmful agents and providing essential support for nerve cells. Mature astrocytes can have a very long lifespan and may exist for years.

Recent studies identified HIV genomes in up to 19% of astrocytes in brain tissues from deceased HIV-1 infected individuals. So far, no experimental model has existed to study HIV latency in these cells. “With our model system, we can simulate latent HIV infection in astrocytes,” said Dr. Martha Schneider, first author of the study.

The researchers showed that various substances, including the cytokine TNF-alpha, can reactivate the inactive virus. Conversely, it was also possible to inhibit the reactivation of the virus by treating the cells with certain compounds. “These results identify drug candidates that may prevent activation of latent viruses in astrocytes”, Schneider concluded.

In the future, the scientists plan to use this system to study the effect of these and other compounds that may prevent the activation of HIV-1 in the brain. As study director Brack-Werner explained: “Several viral proteins are toxic to neurons and may cause immune damage in the brain. Since only limited replacement of astrocytes occurs in the brain, loss of these cells may cause serious damage. Thus silencing the virus in brain cells is an important goal.” In addition, the researchers plan to test the effect of approved drugs and thus to improve the clinical care of HIV-1 patients in the future.


Further Information

Original Publication:
Schneider, M. et al. (2015). A new model for post-integration latency in macroglial cells to study HIV-1 reservoirs of the brain, AIDS, DOI:10.1097/QAD.0000000000000691

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The Institute of Virology (VIRO) investigates viruses that chronically infect humans and can cause life-threatening diseases. The research activities of the institute focus mainly on the HI virus which causes AIDS, on endogenous retroviruses, which are integrated into our germline, and hepatitis B and C viruses, which cause liver cirrhosis and hepatocellular carcinoma. Molecular studies identify new diagnostic and therapeutic concepts to prevent and treat these viral diseases or to prevent the formation of virus-induced tumors.

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49-(0)89-3187-2238 - Fax: +49 89-3187-3324 - Email: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Prof. Dr. Ruth Brack-Werner, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institut für Virologie, Ingolstädter Landstr. 1, 85764 Neuherberg – Phone: +49-(0)89-3187-2923 - Email: brack@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/en/index.html - Website Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/en/viro/index.html - Website Institute of Virology
http://www.helmholtz-muenchen.de/aktuelles/pressemitteilungen/2015/index.html - Press Releases of the Helmholtz Zentrum München

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>