Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method provides researchers with efficient tool for tagging proteins

30.07.2014

Aarhus University researchers have developed an easier method to create DNA–protein conjugates. The method can potentially strengthen the work involved in diagnosing diseases.

DNA linked to proteins – including antibodies – provides a strong partnership that can be used in diagnostic techniques, nanotechnology and other disciplines. DNA–protein conjugates – which tag proteins with DNA – can be used for purposes such as the sensitive detection and visualisation of biological material. The method also provides easier access to handling proteins in nanotechnology, where the DNA acts as a handle on the protein.


With a new method, researchers use a piece of DNA engineered to bind to metal ions. Using this ‘control stick’, they direct another piece of DNA to a metal binding site on the protein. Illustration: Nature Chemistry

Controlling the conjugation of macromolecules such as DNA and proteins can be quite a challenge when scientists want to join them in particular ways and places. Researchers at Aarhus University have now developed a new and efficient method to tag proteins with DNA, making it much simpler to control the process than previously. The new method was developed at the Danish National Research Foundation’s Centre for DNA Nanotechnology (CDNA) in collaboration between researchers at Aarhus University’s Interdisciplinary Nanoscience Centre (iNANO), Department of Chemistry and Department of Molecular Biology and Genetics. The work is described in the highly prestigious scientific journal Nature Chemistry.

“Maintaining the protein’s function and activity often requires the attachment of only a single DNA strand to the protein. At the same time, it can be important to know where the DNA strand is attached to the protein. You can normally only achieve this if you are working with genetically engineered proteins. This is a time-consuming and technically challenging process,” explains PhD student Christian B. Rosen, CDNA, Aarhus University – one of the researchers behind the new method.

The new method makes it possible to direct the tagging of proteins with DNA to a particular site on the protein, without genetically modifying the protein beforehand. In other words, it is possible to tag natural proteins, including antibodies.

The researchers use a piece of DNA that is engineered to bind to metal ions. Using this ‘control stick’, they direct another piece of DNA to a metal binding site on the protein, where it reacts. A considerable number of proteins bind metal ions, which makes them suitable for this method. A significant point in using this method is that the tagged proteins retain their functionality after being bound to DNA.

The researchers are applying for a patent for the new method, which has potential in a number of areas.

“Of greatest importance is the fact that we can use our technique for tagging antibodies. Antibodies that are chemically bound (conjugated) to chemotherapeutics represent an entirely new class of medicine in which the antibody part is used to recognise specific tissue and the chemotherapeutic part is used to kill the cell. When you tag antibodies, it’s important that you keep the recognition element of the antibody intact. With our method, we strike the constant part of the antibody and not the variable part, which contains its recognition element. Our technique is therefore general for a major class of proteins,” explains Anne Louise Bank Kodal, CDNA, another author of the article.

The researchers are working on further developing the method so they can attach chemotherapeutics to antibodies and not just DNA.

Read the article in Nature Chemistry.

For more information, please contact

PhD student Christian B. Rosen
CDNA at iNANO and Department of Chemistry
crosen@chem.au.dk

PhD student Anne Louise Bank Kodal
CDNA at iNANO and Department of Chemistry
alkodal@chem.au.dk

Postdoctoral Fellow Thomas Tørring
CDNA at iNANO (currently at Yale University, USA)
thomas.torring@yale.edu

Professor and Director Kurt Gothelf
CDNA at iNANO and Department of Chemistry
kvg@chem.au.dk

Christian B. Rosen | Eurek Alert!
Further information:
http://scitech.au.dk/en/current-affairs/news/show/artikel/ny-metode-giver-forskere-et-effektivt-vaerktoej-til-maerkning-af-proteiner/

Further reports about: Aarhus Antibodies Controlling DNA Molecular Nanoscience Nanotechnology Nature function ions method protein proteins

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

How skin cells protect themselves against stress

12.12.2018 | Life Sciences

Copper compound as promising quantum computing unit

12.12.2018 | Life Sciences

New approach towards an improved treatment of anxiety disorders

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>