Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanisms uncovered explaining frost tolerance in plants

26.09.2016

Defying frost and the cold with hormones

Plants cannot simply relocate to better surroundings when their environmental conditions are no longer suitable. Instead, they have developed sophisticated molecular adaptation mechanisms. Scientists at the Technical University Munich (TUM) in cooperation with the Helmholtz Center Munich and the University of Nottingham have been able to demonstrate that brassinosteroids, which until now have mainly been regarded as growth hormones, increase the resistance of plants against frost.


Pictured are frozen flowers of an apple tree in South Tyrol, Italy that have been protected from damage by late frost with frost-protection sprinkling. Eremina et al show that in the freezing tolerance of plants steroid hormones take part, and elucidate molecular pathways, which contribute to this activity. (Photo: courtesy of D. Mitterer-Zublasing)

"Stress caused by cold is an environmental influence which has a direct effect on the growth and yield of plants", says plant molecular biologist Professor Brigitte Poppenberger. With her research group at the Biotechnology of Horticultural Crops institute at the TUM, she investigates the mechanisms used by plants to adapt to external influences. Her research activities have centered on brassinosteroids for quite some time.

In earlier work, her group already used common thale cress (Arabidopsis thaliana) as a model plant to demonstrate exactly how this plant hormone, which was identified for the first time in rapeseed in 1979, promotes plant growth. In fact, it had been known for a long time that this hormone plays a role in plant development. However, the exact mechanism of action was unknown. It was the work of the biotechnology experts at the TUM School for Life Sciences in Weihenstephan that first made it possible to gain a precise understanding of this phenomenon.

It's no coincidence that Brigitte Poppenbergers team once again picked Arabidopsis for the current study. Due to its relatively undemanding nature, simple structure, and its compact size, it isn't simply a favorite among geneticists in general—the tiny herb also provides optimal conditions under which to search for cold protection mechanisms in plants, as it's able to survive low temperatures and increase its tolerance to frost by adapting to the cold. In the current issue of the specialist journal "Proceedings of the National Academy of Sciences" (PNAS), the scientists describe the hitherto unknown side of brassinosteroids, which up until now have been known as growth hormones.

In order to gain a detailed understanding of their mechanisms, the researchers carried out experiments in which they exposed Arabidopsis plants to slowly decreasing temperatures. Experiments with wild-type varieties in the laboratory showed that as the temperature decreases, the plant reacts by beginning to modify the expression of genes for which DNA is transcribed to RNA within its cells. "This reduces its growth, which increases its chances of survival", Poppenberger explains, describing the natural protective mechanism of the normal plants.

A molecular path to 'winter fat'

The researchers obtained a different result with their experiments involving genetically modified model plants, which are no longer able to synthesize brassinosteroids themselves or recognize them as a signal. While wild-type varieties often still managed to survive temperatures of six degrees below zero, most of the mutants already displayed clear signs of damage at this point, which demonstrates the essential role steroid hormones play in this process. By analyzing the process, the researchers found that brassinosteroids increase frost resistance by regulating a protein called CESTA. This protein uses a signal cascade to control gene expression. In this manner, it in turn influences the protein composition of the cells, which among other things appears to lead to a change in the fatty acid composition. This ensures that the plant stocks up on a type of 'winter fat' on a molecular level, thereby protecting it from potential cold damage.

Spray-on steroids for plants

These exact findings regarding the order and type of chemical processes for the effects of steroid hormones in plants are not only an important step forward for basic research into the adaptation strategies of plants. More importantly, according to the researchers, they may also provide solutions to problems, which have occurred in agriculture as a result of climate change. Although people generally only associate global warming with an increased occurrence of hot periods, it also causes an increase in the number of frost events, such as early and late frosts, which can lead to devastating harvest shortfalls. "The conventional method of breeding more resistant plants has not been very successful so far, as resistance to cold and reduced growth are difficult to separate", says Brigitte Poppenberger. But she's convinced that "our discovery that brassinosteroids boost both growth and cold resistance will open up new possibilities for bringing out both characteristics in plants." She asserts that it's also possible to spray crop plants with brassinosteroids to achieve both effects. "That may be a viable method—at least, that's what the findings suggest."

Publication:
Marina Eremina , Simon J. Unterholzner, Ajith I. Rathnayake , Marcos Castellanos , Sean T. May, Klaus F. X. Mayer, Wilfried Rozhon and Brigitte Poppenberger: Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants, PNAS 2016. doi: 10.1073/pnas.1611477113

Contact:
Technical University of Munich
Biotechnology of Horticultural Crops
Prof. Dr. Brigitte Poppenberger
Tel.: +49 8161 71-2401
brigitte.poppenberger@wzw.tum.de
http://www.bgk.wzw.tum.de/index.php?id=2&L=1

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/short/article/33364/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Arabidopsis Horticultural PNAS TUM hormones steroid hormones tolerance

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>