Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mathematical method reveals structure in neural activity in the brain

20.10.2015

A newly-developed mathematical method can detect geometric structure in neural activity in the brain. "Previously, in order to understand this structure, scientists needed to relate neural activity to some specific external stimulus," said Vladimir Itskov, associate professor of mathematics at Penn State University.

"Our method is the first to be able to reveal this structure without our knowing an external stimulus ahead of time. We've now shown that our new method will allow us to explore the organizational structure of neurons without knowing their function in advance."


This is an artist's illustration of neurons.

Credit: Benedict Campbell, Wellcome Images/CC

"The traditional methods used by researchers to analyze the relationship between the activities of neurons were adopted from physics," said Carina Curto, associate professor of mathematics at Penn State, "but neuroscience data doesn't necessarily play by the same rules as data from physics, so we need new tools. Our method is a first step toward developing a new mathematical toolkit to uncover the structure of neural circuits with unknown function in the brain."

The method -- clique topology -- was developed by an interdisciplinary team of researchers at Penn State, the University of Pennsylvania, the Howard Hughes Medical Institute, and the University of Nebraska-Lincoln. The method is described in a paper that will be posted in the early online edition of the journal Proceedings of the National Academy of Sciences during the week ending October 23, 2015.

"We have adopted approaches from the field of algebraic topology that previously had been used primarily in the domain of pure mathematics and have applied them to experimental data on the activity of place cells -- specialized neurons in the part of the brain called the hippocampus that sense the position of an animal in its environment," said Curto.

The researchers measured the activity of place cells in the brains of rats during three different experimental conditions. They then analyzed the pairwise correlations of this activity -- how the firing of each neuron was related to the firing of every other neuron.

In the first condition, the rats were allowed to roam freely in their environment -- a behavior where the activity of place cells is directly related to the location of the animal in its environment. They searched the data to find groups of neurons, or "cliques," in which the activity of all members of the clique was related to the activity of every other member. Their analysis of these cliques, using methods from algebraic topology, revealed an organized geometric structure. Surprisingly, the researchers found similar structure in the activities among place cells in the other two conditions they tested, wheel-running and sleep, where place cells are not expected to have geometric organization.

"Because the structure we detected was similar in all three experimental conditions, we think that we are picking up the fundamental organization of place cells in the hippocampus," said Itskov.

###

In addition to Itskov and Curto, other members of the research team include Chad Giusti at the University of Pennsylvania and Eva Pastalkova at the Howard Hughes Medical Institute.

The research was supported by the National Science Foundation (grant numbers DMS 1122519, DMS 122566, and DMS 1537228), the Alfred P. Sloan Foundation, the Defense Advanced Research Projects Agency Young Faculty Award (grant number W911NF-15-1-0084), and the Howard Hughes Medical Institute.

CONTACTS

Vladimir Itskov: vladimir.itskov@psu.edu

Carina Curto: cpc16@psu.edu

Barbara Kennedy (PIO): science@psu.edu, (+1) 814-863-4682

ARCHIVE

This press release will be archived online at http://science.psu.edu/news-and-events/2015-news/ItskovCurto10-2015

Media Contact

Barbara K. Kennedy
science@psu.edu
814-863-4682

 @penn_state

http://live.psu.edu 

Barbara K. Kennedy | EurekAlert!

Further reports about: activities activity experimental conditions neural activity neurons structure

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>