Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New iron transporter discovered in cereal-associated bacteria

07.09.2018

A research team from Jena has discovered a new siderophore ("iron carrier"). The molecule called gramibactin is produced by bacteria that live in the root area of maize and wheat. It binds to iron from the environment that is otherwise mostly insoluble in water and targets it into the bacterial metabolism. The grain plants benefit from this because they can absorb the iron that is mobilised by the bacteria and form more chlorophyll. Gramibactin binds iron in a way not previously observed in nature. The study is published in the journal Nature Chemical Biology and highlights the complex interaction of the root microbiome with the host plant and its implications for future food security.

Christian Hertweck and his team of scientists found evidence of a novel iron uptake system in the genome of the bacterium Paraburkholderia graminis. The researchers isolated a ring-shaped molecule that belongs to the family of lipodepsipeptides and named it gramibactin because the bacteria that produce it are associated with the roots of sweet grasses – the Gramineae.


A model of the molecule gramibactin. Possible binding sites for iron are highlighted in yellow.

Ron Hermenau / Leibniz-HKI


Corn plants treated with an iron-gramibactin complex (four leaves on the right, darker green colour) show increased chlorophyll synthesis than controls with iron-free gramibactin.

Ron Hermenau / Leibniz-HKI

Gramibactin fixes iron (III) ions with a very high affinity through two unusual N-nitrosohydroxylamine groups that protrude from the ring structure. This has not previously been observed in natural iron transporter molecules and therefore makes gramibactin the first representative of an entirely new class of siderophores.

Benefit to grain crops

The researchers tested whether gramibactin can actually improve the iron supply of plants in the vicinity of which it occurs, using the production of chlorophyll as a read-out. Chlorophyll is the green pigment that is required for photosynthesis and it can only be synthesized if sufficient iron is present. The team was able to demonstrate that corn plants produced up to 50 % more chlorophyll on exposure to the gramibactin-iron complex.

These results show that iron provided through bacterial activities can have a beneficial effect on plant growth. These insights might be important because maize and wheat are two of the most important cereals for global food production. A balanced and natural colonisation of the plant root area with microorganisms – the so-called root microbiome – is an essential factor for plant growth and high crop yields.

"It is always fascinating to see the different ways in which chemical problems are solved in nature", says Hertweck and adds: "We hope that our findings will contribute to improving the fitness and health of these important crops in a natural way.”

The authors of the study work in the Collaborative Research Centre ChemBioSys. This program is funded by the German Research Foundation (DFG) and includes scientists from the Friedrich Schiller University, the Leibniz Institute for Natural Product Research and Infection Biology and other institutions that work together to elucidate signalling pathways in complex biological communities. Often several species are involved in the synthesis of substances or benefit from them in different ways. Research into such multi-partner systems and the mechanisms that stabilize them is a major research focus in Jena.

The Collaborative Research Centre ChemBioSys

In the Collaborative Research Centre (CRC) ChemBioSys, biologists, chemists and physicists jointly investigate fundamental control mechanisms in complex biological systems that influence our daily lives. They study representative biosystems with bacteria, fungi, microalgae, plants, animals and human cells in increasing complexity. New molecules are being researched and strategies are being tested to influence the composition of biological communities. Scientists from the Friedrich Schiller University Jena, the Leibniz Institute for Natural Product Research and Infection Biology and the Max Planck Institute for Chemical Ecology are involved in the CRC ChemBioSys. The program is funded by the German Research Foundation (DFG).

Wissenschaftliche Ansprechpartner:

Christian Hertweck
christian.hertweck@leibniz-hki.de

Originalpublikation:

Hermenau R, Ishida K, Gama S, Hoffmann B, Pfeifer-Leeg M, Plass W, Mohr JF, Wichard T, Saluz HP, Hertweck C (2018) Gramibactin is a bacterial siderophore with a diazeniumdiolate ligand system. Nature Chemical Biology 14, 841-843.

Dr. Michael Ramm | idw - Informationsdienst Wissenschaft
Further information:
http://www.hki-jena.de

Further reports about: Biology CRC DFG Infection Nature Chemical Biology bacteria bacterial crops global food production

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>