Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the world of trypanosomes

23.08.2017

Such detailed images of the pathogen that causes sleeping sickness inside a host are unique so far: They illustrate the manifold ways in which the parasites move inside a tsetse fly. A research team from the University of Würzburg's Biocenter has presented the images.

Single specimens of the vermicular pathogens causing sleeping sickness swim inside the gut of the tsetse fly between blood cells which the fly has ingested from an infected mammal.


3D model of the proventriculus, a special organ of the tsetse fly: The distribution of the trypanosomes based on the fluorescent cell nuclei is shown in yellow.

(Picture: Chair of Zoology I/eLife)


Three-dimensional models of the swimming developmental stages of the trypanosomes. The structure of the flagella was also analysed.

(Picture: Chair of Zoology I/eLife)

This is where they start their week-long journey through the fly's internal organs. In other places, they have clustered together to form a teeming swarm so dense that nothing is visible of the fly's structures.

Trypanosomes are the pathogens responsible for sleeping sickness. Inside the fly's salivary gland, they attach to the epithelium in huge numbers while continuing to beat their flagella at high frequency. In this position, the parasites remain waiting until the tsetse fly bites a human or an animal to be released into the victim's blood stream with the saliva.

Habitats inside the fly where mapped three-dimensionally

A team of researchers from the Biocenter of Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, has captured these and other processes in high-resolution pictures and videos. What is more, they used light sheet microscopy to map all habitats of the parasites inside the fly in 3D.

"These images are unparalleled," Tim Krüger says. Thanks to the detailed images, the scientists are now able to take the surprisingly complex microenvironment of the trypanosomes into account when investigating the infectious disease in more detail. Krüger studies the parasites at the JMU’s Chair of Cell and Developmental Biology in the team of Professor Markus Engstler.

Lash-like protrusion serves as drive

Trypanosomes are protozoa that move with the help of flagella, which are lash-like appendages protruding from the cell. "They are highly dynamic and never stop the flagellar beating," Krüger explains. "This enables them to swim and navigate effectively in various environments." And the parasites are capable of doing so not only inside the fly, but also in the blood stream, in skin, fat tissue, the brain and other organs of humans and animals.

In a new publication in the journal eLife, the Würzburg team shows detailed 3D images of the trypanosomes' anatomy in all developmental stages inside the tsetse fly. They analysed the swimming behaviour in the different tissues and present among others imaging techniques that allow tracking and quantifying entire swarms of the pathogen inside the fly.

Swimming behaviour of the parasites inside the tsetse fly unclear

The JMU scientists want to use this new range of analysis options to examine the trypanosomes in more depth. Because it is still largely unclear how and on which ways the dangerous pathogens swim through the fly's body before infecting a human.

One strategy to combat sleeping sickness is to interrupt or prevent pathogen development already in the tsetse fly. "But this can only succeed if we know exactly how the trypanosomes behave inside the fly," Tim Krüger says.

Exploring "microswimming" effects

Physicists also have an interest in the high-resolution images from the Biocenter. "Our cooperation partners have a keen interest in this, because they are dealing with so-called 'microswimmers'," as Krüger explains. To be more precise, they are interested in the hydrodynamic effects of swimming motions at small scales, at the individual cell level and in collective swimming phenomena. This is a complex topic since the effects here are completely different from those of larger objects swimming in water.

In turn, the team of Professor Engstler hopes to glean important stimuli from physics: "If we have a better understanding of the interactions between parasites and hosts also at the physical level, we can develop new approaches to explain how the parasites adapt and how the infectious processes inside the hosts evolve."

Facts about sleeping sickness

Trypanosomes are wide-spread in sub-Saharan Africa. The protozoan parasites are transmitted by the bite of an infected tsetse fly. Each year, there are around 30,000 new infections. Initial symptoms include headaches and joint pains followed by confusion, seizures and other symptoms in later stages. Finally, the sufferers fall into a coma and die.

There are no vaccines available against the pathogens; the available drugs can have extreme side effects. So there is urgent demand for better medication to treat the disease. Trypanosomes not only infect humans. They also kill cattle, goats and other livestock thereby causing enormous damage: In some regions of Africa, livestock breeding is hardly possible due to the trypanosomes.

Link to the online publication

eLife is a multidisciplinary open-access journal which covers life science topics. The Würzburg videos and animations on the behaviour of the trypanosomes in tsetse flies are incorporated in the journal article: https://elifesciences.org/articles/27656

Schuster, S., Krüger, T., Subota, I., Thusek, S., Rotureau, B., Beilhack, A., Engstler, M. (2017): Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system. eLife, 15 August 2017, DOI: 10.7554/eLife.27656.001

Contact

Dr. Timothy Krüger, Chair of Zoology I (Cell and Developmental Biology), Biocenter, JMU, T +49 931 31-84277, tkrueger@biozentrum.uni-wuerzburg.de

Weitere Informationen:

http://www.zeb.biozentrum.uni-wuerzburg.de/ Website of the Chair of Zoology I, JMU

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: 3D blood stream fly parasites pathogens proventriculus trypanosome tsetse fly

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>