Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into a central biological dogma on ion transport

26.06.2017

New research results from Aarhus University and New York University show how active transport of potassium can be achieved by a membrane protein complex that has roots in both ion pump and ion channel super-families. The results, which have just been published in Nature, shed new light on what define channels and pumps.

Potassium is highly concentrated in all cells, and it is the main determinant of turgor pressure. Too much potassium and the cell can rupture due to water influx, too little and the cell will shrivel as water leaves. This osmotic principle is used also in food preservation, when salting or drying meats, fruits and vegetables.


Members from channel and pump super-families come together in a large complex to create active ion transport.

Credit: Bjørn Panyella Pedersen, Aarhus University

As potassium is virtually impermeable to the cell membrane, potassium transporters have evolved that will mediate its uptake. In unicellular organisms, the mechanisms to maintain internal potassium levels are highly responsive due to the challenges a fluctuating environment can present. Normally, potassium channels will create inward flux of potassium driven by the electrochemical gradient.

However, in environments with very little potassium present, this potential cannot maintain inward flux, and active transport through potassium pump systems rapidly takes over to directly drive the uptake of potassium.

The mechanism and structure of these potassium pump systems are not well understood, and from sequence analysis they appear to have elements pertaining both to potassium channels and to more classical sodium/potassium pumps known from animals. This has puzzled researchers for decades, and many almost even doubted the existence of these complexes as a functional unit.

This is, in part, because of how ion transport is taught in biology as a concept of 'channels versus pumps'. Ion channels mediate fast and passive 'downhill' transport, while ion pumps mediate slow and active 'uphill' transport against an electrochemical gradient. Both processes are relatively well understood, and are normally juxtapositioned as completely different entities.

Channel and pump super-families create active ion transport together

Results published this week in Nature challenge this comfortable separation and address the puzzling question of how pumps and channels might work together in a complex. For the first time, a joint research collaboration between Aarhus University and New York University have visualized a potassium transporting structure where members from channel and pump super-families come together in a large complex to create active transport. One 'pump-like' subunit creates the energy input (similar to a motor), while a 'channel-like' subunit has been re-purposed to function as an active carrier mediating transport of potassium against a 10,000 fold gradient.

"To me the most fascinating part of this whole thing is that it is a break with the boxes we normally like to put our biological concepts in," says AIAS fellow and Assistant Professor Bjørn Panyella Pedersen, part of the small team that has published the results. "It is yet another fascinating example that nature doesn't care about our attempts to make sense of it and classify it. If evolution can make it work, it happens."

The results build on a strong foundation of prior knowledge of channel and pump function. The concept of gated channels has been known and studied for a long time, and indeed most ion channels have one or more gates as an essential part of their physiological function. Similarly, the molecular mechanism behind ion pump function is well described. With the new results we can suddenly see how gates from a channel-like subunit can be linked up to a pump-like subunit that can sequentially control their opening and closing. This creates a strong coupling between gate opening/closing, substrate recognition/binding and energy expenditure. These are all the hallmarks of active transport known from other pump systems, but here they only work if all elements of the complex are together.

"This has been one of the hardest, but also most rewarding structures I have ever had the pleasure of working on. So many new ideas have come out of this, and the interpretation of the results was challenging as we really needed to think outside the box", Bjørn says with a grin, before continuing, "David [Prof. David Stokes] was the key to this, as he has worked on the complex for many years and has an extensive knowledge of the intricacies of the system. This was a true team effort, and we will continue our collaboration to further our knowledge of what makes this complex tick, on the basis of the ideas we have now."

Media Contact

Panyella Pedersen
bpp@mbg.au.dk
45-29-72-34-99

 @aarhusuni

http://www.au.dk 

Panyella Pedersen | EurekAlert!

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>