Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on the effect of Epsom salt - Epsom salt receptor identified

08.04.2019

A team of scientists headed by Maik Behrens from the Leibniz-Institute for Food Systems Biology at the Technical University of Munich has identified the receptor responsible for the bitter taste of various salts. These include medically used Epsom salt. The discovery helps to elucidate the physiological mechanisms by which Epsom salt affects the heart or gut.

The team has now published the findings in the journal Biochemical and Biophysical Research Communications (DOI: 10.1016/j.bbrc.2019.03.139). It also includes scientists of the German Institute of Human Nutrition.

Salt with physiological effects


Model presentation of the bitter receptor TAS2R7

Dr. Antonella Di Pizio/Leibniz-LSB@TUM


Dr. habil. Maik Behrens

C. Schranner/Leibniz-LSB@TUM

Magnesium sulfate, also known as hair salt or Epsom salt, is probably the best-known bitter-tasting salt. The naturally occurring mineral is named after the British city of Epsom, where it was already extracted from spring water in 1697. Even today, it has its place in medicine, for example, to treat constipation or certain cardiac arrhythmias.

Receptor for magnesium, manganese and iron ions

Maik Behrens and his team have now succeeded, with the help of a cellular test system, in identifying a receptor that reacts to Epsom salt or to salts containing magnesium or divalent manganese and iron ions. It is the bitter receptor TAS2R7, one of the 25 different bitter receptor types that people possess.

More than just taste sensors

As gatekeepers in the mouth, bitterness sensors warn against the ingestion of potentially toxic substances. In addition to phytochemicals such as caffeine these also include drugs such as chlorphenamine (antihistamine). Another group of substances represent certain salts, which can lead to significant side effects when consumed in too high doses.

Recent studies indicate that the receptors not only act as taste sensors, but also mediate physiological effects of bitter substances. Thus, bitter receptors are found in organs such as the heart or intestine. "Interestingly, both organs respond to the supply of magnesium salts," says study leader Behrens.

An overdose of magnesium salts has been shown to lead to a drop in blood pressure, cardiac arrest, severe diarrhea and vomiting, the researcher said. However, the molecular mechanisms underlying the respective physiological reactions are still not clear to date.

The researchers are convinced that the discovery of the Epsom salt receptor will help to better understand the physiological effects of minerals and to develop new therapeutics for, for example, heart disease.

Contact:
Dr. Maik Behrens
Section II, Working group Taste Systems Reception & Biosignals
Leibniz-Institute for Food Systems Biology
at the Technical University of Munich
Tel.: +49 816171 2987
Email: m.behrens.leibniz-lsb@tum.de

Press Contact:
Dr. Gisela Olias
Press and Public Relations
Leibniz-Institute for Food Systems Biology
at the Technical University of Munich
Tel.: +49 816171 2980
E-Mail: g.olias.leibniz-lsb@tum.de

www.leibniz-lsb.de

Background information:

Not just good for smelling and tasting –
Chemoreceptors offer approaches for the development of new drug therapies

Odor and taste receptors are found not only in the nose and mouth. Recent studies indicate that they perform other functions in the body, for example, in the immune system or the regulation of metabolism. Therefore, they could serve as starting points for computer-assisted development of new therapeutics. A review article of the Leibniz-LSB@TUM now summarizes the current data situation on this topic.

Di Pizio A, Behrens M, Krautwurst D. (2019) International Journal of Molecular Sciences, DOI: 10.3390/ijms20061402. Beyond the flavor: the potential druggability of chemosensory GPCRs

What do taste receptors in the brain do?

Taste receptors are not only good for tasting, because they are also found on cells of organs that are involved in the hormonal regulation of the body. These include the brain, the pancreas and the thyroid gland. A recent review article of the Leibniz-LSB@TUM summarizes what science has known so far about possible functions of taste receptors in the (neuro)endocrine system.

Behrens M, Meyerhof W (2019) J Neuroendocrinol, DOI: 10.1111/jne.12691. A role for key receptors in (neuro) endocrinology?

The Leibniz-Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM) has a unique research profile. Its researchers combine methods of basic biomolecular research with analytical methods of bioinformatics and analytical high-performance technologies. Their goal is to decode the complex ingredient profiles from raw materials to the final food products and to elucidate their function as biological active molecules on humans. Based on their studies, the scientists develop products, which are as healthy as they are tasty. These foods will help to provide a sustainable and sufficient stream of food for future generations. In addition, the new scientific findings will be used to develop personalized nutritional concepts that, for example, help people with food intolerance without compromising quality of life and endangering their health.

The Leibniz LSB@TUM is a member of the Leibniz Association, which connects 95 independent research institutions. Their orientation ranges from the natural sciences, engineering and environmental sciences through economics, spatial and social sciences to the humanities. Leibniz Institutes devote themselves to social, economic and ecological issues. They conduct knowledge-oriented and application-oriented research, also in the overlapping Leibniz research networks, are or maintain scientific infrastructures and offer research-based services. The Leibniz Association focuses on knowledge transfer, especially with the Leibniz Research Museums. It advises and informs politics, science, business and the public. Leibniz institutions maintain close cooperation with universities - among others, in the form of the Leibniz Science Campuses, industry and other partners in Germany and abroad. They are subject to a transparent and independent review process. Due to their national significance, the federal government and the federal states jointly fund the institutes of the Leibniz Association. The Leibniz Institutes employ around 19,100 people, including 9,900 scientists. The entire budget of all the institutes is more than 1.9 billion euros.

Wissenschaftliche Ansprechpartner:

Dr. Maik Behrens
Section II, Working group Taste Systems Reception & Biosignals
Leibniz-Institute for Food Systems Biology
at the Technical University of Munich
Tel.: +49 816171 2987
Email: m.behrens.leibniz-lsb@tum.de

Originalpublikation:

Behrens M, Redel U, Blank K, Meyerhof W (2019) Biochemical and Biophysical Research Communications, DOI: 10.1016/j.bbrc.2019.03.139. The human bitter taste receptor TAS2R7 facilitates the detection of bitter salts

Dr. Gisela Olias | idw - Informationsdienst Wissenschaft
Further information:
https://www.leibniz-lsb.de

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

Better thermal conductivity by adjusting the arrangement of atoms

19.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>