Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018

Carbon dioxide (CO2) is a major cause of global warming. Researchers use complex computer models to calculate the global circulation of this greenhouse gas. The oceans have a major influence on climate regulation. New research now helps to calculate this influence more precisely. These new findings are the result of a research project by scientists from Jacobs University and the Max Planck Institute for Marine Microbiology in Bremen in collaboration with colleagues from the Alfred Wegener Institute Helmholtz Center for Polar and Marine Research in Bremerhaven, the Marum Centre for Marine Environmental Sciences at the University of Bremen and the University of Gothenburg.

Oceans contain about 50 times more carbon than the atmosphere, and about 20 times more carbon than land. Algae and organic particles in the upper, sunlit water layer bind the CO2, sink to the seabed and deposit there.


When the porous aggregates sink faster towards the seabed, the generated faster fluid flow can provide more oxygen to the aggregate.

Illustration: Science Advances

These so-called aggregates are the main actors in the transport of organic carbon from the surface into the deep sea. By absorbing CO2 from the atmosphere, they play an important role in climate regulation.

In the project funded by the German Research Foundation (DFG), the scientists have now taken a close look at the individual aggregates and calculated the rate of their oxygen consumption.

For example, they found that previous assumptions about oxygen flux into the aggregates were far too high. "We have achieved very accurate results that can be extended to other aggregate types and provide better estimate of oxygen consumption by sinking aggregates," says Dr. Arzhang Khalili, Professor of Computer Science at Jacobs University Bremen and at the Max Planck Institute for Marine Microbiology.

Marine processes can now be integrated into existing climate and carbon cycle models and thus make them more realistic. The results of the study were recently published in the journal "Science Advances".

Information about the illustration attached:
When the porous aggregates sink faster towards the seabed, the generated faster fluid flow can provide more oxygen to the aggregate. Hence, the oxygen content inside the aggregates increases with sinking velocity. The rate of descent is expressed by a dimensionless number, the Reynolds number (Re). The six graphs show the oxygen concentration field at Reynolds number 0 (graph A), 0.01 (B), 0.05 (C), 0.1 (D), 1 (E), 5 (F), 10 (G).

Link to article:
http://advances.sciencemag.org/content/4/10/eaat1991

About Jacobs University Bremen:
Studying in an international community. Obtaining a qualification to work on responsible tasks in a digitized and globalized society. Learning, researching and teaching across academic disciplines and countries. Strengthening people and markets with innovative solutions and advanced training programs. This is what Jacobs University Bremen stands for. Established as a private, English-medium campus university in Germany in 2001, it is continuously achieving top results in national and international university rankings. Its almost 1,400 students come from more than 100 countries with around 80% having relocated to Germany for their studies. Jacobs University’s research projects are funded by the German Research Foundation or the EU Research and Innovation program as well as by globally leading companies.

For more information: http://www.jacobs-university.de

Contact:
Thomas Joppig | Corporate Communications & Public Relations
t.joppig@jacobs-university.de | Tel.: +49 421 200-4504


About the Max Planck Institute for Marine Microbiology:
The Max Planck Institute for Marine Microbiology (MPIMM) is investigating microorganisms in the sea and other waters. What role do they play, what are their characteristics and how great is their biodiversity? What is the contribution of microorganisms to the global cycles of carbon, nitrogen, sulfur and iron? What does this mean for our environment and our climate? These and many other questions will be answered by researchers from around the world, engineers, technicians and numerous others at the MPIMM. Their fields of expertise range from microbiology to microsensors, geochemistry to genome analysis and molecular ecology to modeling. The MPIMM was founded in 1992 and belongs to the Biology & Medicine section of the Max Planck Society (MPG). Since 2002, the MPIMM has been running the International Max Planck Research School of Marine Microbiology (MarMic), a program for highly qualified master students and graduates of our institute and the Bremen Research Alliance partner Bremen University, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI) and Jacobs University.

For more information: http://www.mpi-bremen.de

Contact:
Dr. Fanni Aspetsberger | Press & Communication
faspetsb@mpi-bremen.de | Tel.: +49 421 2028-947

Wissenschaftliche Ansprechpartner:

Prof. Dr. Arzhang Khalili | Professor of Computer Science
a.khalili@jacobs-university.de | +49 421 200 3256
akhalili@mpi-bremen.de | +49 421 2028 63

Thomas Joppig | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

nachricht How are pollen distributed in the air?
18.07.2019 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Genetic differences between strains of Epstein-Barr virus can alter its activity

18.07.2019 | Health and Medicine

Algae-killing viruses spur nutrient recycling in oceans

18.07.2019 | Life Sciences

Machine learning platform guides pancreatic cyst management in patients

18.07.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>