Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018

Carbon dioxide (CO2) is a major cause of global warming. Researchers use complex computer models to calculate the global circulation of this greenhouse gas. The oceans have a major influence on climate regulation. New research now helps to calculate this influence more precisely. These new findings are the result of a research project by scientists from Jacobs University and the Max Planck Institute for Marine Microbiology in Bremen in collaboration with colleagues from the Alfred Wegener Institute Helmholtz Center for Polar and Marine Research in Bremerhaven, the Marum Centre for Marine Environmental Sciences at the University of Bremen and the University of Gothenburg.

Oceans contain about 50 times more carbon than the atmosphere, and about 20 times more carbon than land. Algae and organic particles in the upper, sunlit water layer bind the CO2, sink to the seabed and deposit there.


When the porous aggregates sink faster towards the seabed, the generated faster fluid flow can provide more oxygen to the aggregate.

Illustration: Science Advances

These so-called aggregates are the main actors in the transport of organic carbon from the surface into the deep sea. By absorbing CO2 from the atmosphere, they play an important role in climate regulation.

In the project funded by the German Research Foundation (DFG), the scientists have now taken a close look at the individual aggregates and calculated the rate of their oxygen consumption.

For example, they found that previous assumptions about oxygen flux into the aggregates were far too high. "We have achieved very accurate results that can be extended to other aggregate types and provide better estimate of oxygen consumption by sinking aggregates," says Dr. Arzhang Khalili, Professor of Computer Science at Jacobs University Bremen and at the Max Planck Institute for Marine Microbiology.

Marine processes can now be integrated into existing climate and carbon cycle models and thus make them more realistic. The results of the study were recently published in the journal "Science Advances".

Information about the illustration attached:
When the porous aggregates sink faster towards the seabed, the generated faster fluid flow can provide more oxygen to the aggregate. Hence, the oxygen content inside the aggregates increases with sinking velocity. The rate of descent is expressed by a dimensionless number, the Reynolds number (Re). The six graphs show the oxygen concentration field at Reynolds number 0 (graph A), 0.01 (B), 0.05 (C), 0.1 (D), 1 (E), 5 (F), 10 (G).

Link to article:
http://advances.sciencemag.org/content/4/10/eaat1991

About Jacobs University Bremen:
Studying in an international community. Obtaining a qualification to work on responsible tasks in a digitized and globalized society. Learning, researching and teaching across academic disciplines and countries. Strengthening people and markets with innovative solutions and advanced training programs. This is what Jacobs University Bremen stands for. Established as a private, English-medium campus university in Germany in 2001, it is continuously achieving top results in national and international university rankings. Its almost 1,400 students come from more than 100 countries with around 80% having relocated to Germany for their studies. Jacobs University’s research projects are funded by the German Research Foundation or the EU Research and Innovation program as well as by globally leading companies.

For more information: http://www.jacobs-university.de

Contact:
Thomas Joppig | Corporate Communications & Public Relations
t.joppig@jacobs-university.de | Tel.: +49 421 200-4504


About the Max Planck Institute for Marine Microbiology:
The Max Planck Institute for Marine Microbiology (MPIMM) is investigating microorganisms in the sea and other waters. What role do they play, what are their characteristics and how great is their biodiversity? What is the contribution of microorganisms to the global cycles of carbon, nitrogen, sulfur and iron? What does this mean for our environment and our climate? These and many other questions will be answered by researchers from around the world, engineers, technicians and numerous others at the MPIMM. Their fields of expertise range from microbiology to microsensors, geochemistry to genome analysis and molecular ecology to modeling. The MPIMM was founded in 1992 and belongs to the Biology & Medicine section of the Max Planck Society (MPG). Since 2002, the MPIMM has been running the International Max Planck Research School of Marine Microbiology (MarMic), a program for highly qualified master students and graduates of our institute and the Bremen Research Alliance partner Bremen University, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI) and Jacobs University.

For more information: http://www.mpi-bremen.de

Contact:
Dr. Fanni Aspetsberger | Press & Communication
faspetsb@mpi-bremen.de | Tel.: +49 421 2028-947

Wissenschaftliche Ansprechpartner:

Prof. Dr. Arzhang Khalili | Professor of Computer Science
a.khalili@jacobs-university.de | +49 421 200 3256
akhalili@mpi-bremen.de | +49 421 2028 63

Thomas Joppig | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>