Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New eDNA technology used to quickly assess coral reefs

18.04.2019

Scientists at the University of Hawai`i at Mānoa Department of Biology have developed a technique for measuring the amount of living coral on a reef by analyzing DNA in small samples of seawater. The new research by Patrick Nichols, a graduate student in the marine biology graduate program, and Peter Marko, an associate professor in the Department of Biology, was published in Environmental DNA.

Underwater visual surveys are used widely in coral reef ecology and are an important part of any coral reef monitoring program. However, visual surveys are typically conducted using SCUBA, which can be both time-consuming and logistically challenging.


Drone imagery of coral patches along the coast of Maunalua Bay, O'ahu, Hawai'i where researchers in the Marko Lab at the University of Hawai'i use coral DNA from filtered seawater to assess coral cover on local reefs.

Credit: Patrick K. Nichols

As an efficient complement to visual surveys, the analysis of environmental DNA (eDNA), DNA sloughed or expelled from organisms into the environment, has been used to assess species diversity, primarily in aquatic environments.

The technique takes advantage of the fact that all organisms constantly shed DNA into the environment, leaving behind a genetic residue that can be detected and analyzed with molecular biology tools.

Despite the growing use of eDNA to catalog the presence and absence of species, a reliable link between the abundance of organisms and the quantity of DNA has remained elusive. In their paper, Nichols and Marko demonstrate that this new method tested on coral reefs in Hawaii is a quick and cost-effective way to measure live coral "cover," the amount of a coral reef occupied by living corals. Because corals facilitate the presence of many other species on a reef, coral cover is one of several important measuring sticks that scientists use to characterize the status of a reef, an urgent task on reefs that are declining worldwide as a consequence of global climate change.

"It still amazes me that in a tiny tube of water, there is enough information to track the relative abundance of entire communities," said Nichols. "Increasing the breadth and scope of surveys is exactly what makes the future of eDNA so exciting!"

"Metabarcoding"

The project used "metabarcoding," a technique in which all of the DNA in a water sample is analyzed in one step with DNA sequencing. Coral DNA sequences are then identified and counted to determine the abundances of different types of corals at each reef. Degraded reefs have very little coral eDNA whereas reefs with more living corals have a much stronger coral eDNA signature.

The authors explain in their paper that this new technique can be used to track changes in coral reef health and community composition over time, as well as detect rare species that can otherwise be missed by traditional visual-based survey methods.

"If you asked me 10 years ago if this was possible, I would have said, 'No way,'" said Marko. "But advances in technology and falling costs of highly-sensitive DNA sequencing methods have opened the door to all kinds of important ecological questions."

The researchers are currently applying what they learned from the project to the most compelling applications of eDNA monitoring in communities that are much more difficult to visually assess, such as deep reefs that provide potential refuge from climate change for temperature-sensitive species.

Media Contact

Patrick Nichols
pkn@hawaii.edu
508-439-2190

 @UHManoaNews

http://manoa.hawaii.edu 

Patrick Nichols | EurekAlert!

More articles from Life Sciences:

nachricht Dissolving protein traffic jam at the entrance of mitochondria
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Producing tissue and organs through lithography
23.05.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Producing tissue and organs through lithography

23.05.2019 | Life Sciences

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>