Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries map out CRISPR-Cas defence systems in bacteria

25.09.2019

New discoveries map out CRISPR-Cas defence systems in bacteria

With the aid of highly advanced microscopes and synchrotron sources, researchers from the University of Copenhagen have gained seminal insight into how bacteria function as defence mechanisms against attacks from other bacteria and viruses.


Model of CSX1 protein complex.

Credit: Novo Nordisk Foundation Center for Protein Research

The study, which has just been published in the renowned journal, Nature Communications, also describes how the defence systems can be activated on cue. This discovery can turn out to be an important cornerstone in fighting diseases in the future.

The researchers have shown how a cell attacked by a virus activates a molecule called COA (Cyclic Oligoadenylate), which in turn activates a so-called protein complex called CSX1 to eradicate the attacker.

'Expressed in popular terms, the CSX1 starts cutting up the intruder. We can see how CSX1 is activated, rotates and starts defending the cell, once COA is activated,' Professor Guillermo Montoya from Novo Nordisk Foundation Center for Protein Research at the Faculty of Health and Medical Science explains.

Can help fight disease

The researchers at the University of Copenhagen have also managed to successfully activate the process themselves. They sent a COA molecule after the protein complex, so to say, and thus started the defence mechanism.

'In short, we have found a switch that turns on the cell's defence system when we want it to, and so we can diffuse possible attacks,' Guillermo Montoya elaborates.

It is the first time ever that researchers have managed to map and activate a bacterial immune system.

'A few years ago, science wasn't even aware that bacteria had some sort of immune defence system. With this discovery, we have come a great deal further in terms of understanding these mechanisms,' Guillermo Montoya says.

Furthermore, the discovery is interesting because the defence system in bacteria resemble in many ways the human innate immune system.

'Therefore, it is also a step along the way of understanding the human immune system better as well as knowing how to fight bacteria and defend oneself against viruses and in the long run even multiple resistance,' Guillermo Montoya says.

Minimal molecules and a huge magnifying glass

The discovery of a bacteria defence system was made possible by using so-called x-ray crystallography at an establishment in Switzerland and one of the world's most powerful microscopes - the so-called synchrotron MAX IV - in Lund, Sweden.

The image of the CSX1protein complex was made possible by the advanced cryogenic electron microscope at the University of Copenhagen's high tech CryoEM facility - in popular terms a strong magnifying glass.

'CSX1 is approximately 0.00005 mm long. This equates cutting one millimetre into 10,000 slices and then placing five pieces on top of each other. We have taken the pictures one by one and made a short film that reveals the activity inside CSX1,' Guillermo Montoya explains.

The work with uncovering defence mechanisms in bacteria is supported by Novo Nordisk Fonden and it is a collaboration between Novo Nordisk Center for Protein Research at the Faculty of Health and Medical Science and the Danish Archea Center at the Faculty of Science headed by Professor Qunxin She and Lund University.

Media Contact

Guillermo Montoya
guillermo.montoya@cpr.ku.dk
45-51-32-45-81

http://healthsciences.ku.dk/ 

Guillermo Montoya | EurekAlert!
Further information:
https://healthsciences.ku.dk/newsfaculty-news/2019/09/new-discoveries-map-out-crispr-cas-defence-systems-in-bacteria/
http://dx.doi.org/10.1038/s41467-019-12244-z

More articles from Life Sciences:

nachricht New deep-water coral discovered
22.10.2019 | Smithsonian Tropical Research Institute

nachricht DNA-reeling bacteria yield new insight on how superbugs acquire drug-resistance
22.10.2019 | Indiana University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New deep-water coral discovered

22.10.2019 | Life Sciences

DNA-reeling bacteria yield new insight on how superbugs acquire drug-resistance

22.10.2019 | Life Sciences

Heat Pumps with Climate-Friendly Refrigerant Developed for Indoor Installation

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>