Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device mimics beating heart with tiny pieces of heart tissue

04.03.2019

Researchers at Imperial College London created a bioreactor to allow heart tissue to experience mechanical forces in sync with the beats, like it would in the body, to study the mechanics of healthy and diseased hearts.

It is difficult to study hearts in the laboratory because of their incredible ability to change in response to their environment. Hearts in healthy athletes enlarge to support the increased demands on the body, hearts in those with chronic hypertension get thicker and less elastic and can eventually fail.


The novel bioreactor that allows heart tissue to stretch and contract like it would in the body.

Credit: Fotios Pitoulis

Heart tissue in labs undergoes remodeling, making it difficult to understand heart physiology and to develop new medicines for heart disease. Graduate student Fotios Pitoulis, working in Cesare Terracciano's lab at Imperial College London, in collaboration with Pieter de Tombe, created a new system to study heart tissue within a physiological environment.

They will present their work at the 63rd Biophysical Society Annual Meeting, to be held March 2 - 6, 2019 in Baltimore, Maryland.

"The heart needs to generate force and shorten at the same time to squeeze blood out; this is not usually something you see in in vitro heart models," Terracciano said.

Using tiny pieces of heart tissue with preserved structure and function, they were able to recapitulate the sequence of mechanical events as found in the body. This was done by creating a custom bioreactor that allows the tissue to shorten in sync with electrical stimulation.

To see whether the heart tissue in their system behaved like it would inside the body, they added noradrenaline and changed the workload on the tissue to simulate normal conditions and disease. The team observed changes in force similar to those observed in hearts in vivo..

The new aspects of this system is that contraction parameters can be promptly adjusted using computer algorithms to mimic normal or disease conditions, for example to recreate the stiffer conditions of high blood pressure.

"If you have high blood pressure, you affect how the heart cells work. We can recreate this condition to understand what happens at the level of the tissue," Terracciano said.

Pitoulis added, "We now have a unique tool to study the mechanical and electrical properties of heart tissue, as well as long-term changes that happen at the molecular level within the context of healthy heart or disease."

###

The Biophysical Society, founded in 1958, is a professional, scientific Society established to encourage development and dissemination of knowledge in biophysics. Its 9,000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories and government agencies. The Annual Meeting attracts over 6,000 attendees and features more than 900 posters and over 500 speakers. http://www.biophysics.org.

Media Contact

Sean Winkler
swinkler@biophysics.org
240-290-5606

http://www.biophysics.org 

Sean Winkler | EurekAlert!
Further information:
https://www.biophysics.org/news-room/science-at-bps-2019-new-device-mimics-beating-heart-with-tiny-pieces-of-heart-tissue

More articles from Life Sciences:

nachricht Catalysts for climate protection
19.08.2019 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht From the tiny testes of flies, new insight into how genes arise
19.08.2019 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Stanford builds a heat shield just 10 atoms thick to protect electronic devices

19.08.2019 | Information Technology

Researchers demonstrate three-dimensional quantum hall effect for the first time

19.08.2019 | Physics and Astronomy

Catalysts for climate protection

19.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>