Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device mimics beating heart with tiny pieces of heart tissue

04.03.2019

Researchers at Imperial College London created a bioreactor to allow heart tissue to experience mechanical forces in sync with the beats, like it would in the body, to study the mechanics of healthy and diseased hearts.

It is difficult to study hearts in the laboratory because of their incredible ability to change in response to their environment. Hearts in healthy athletes enlarge to support the increased demands on the body, hearts in those with chronic hypertension get thicker and less elastic and can eventually fail.


The novel bioreactor that allows heart tissue to stretch and contract like it would in the body.

Credit: Fotios Pitoulis

Heart tissue in labs undergoes remodeling, making it difficult to understand heart physiology and to develop new medicines for heart disease. Graduate student Fotios Pitoulis, working in Cesare Terracciano's lab at Imperial College London, in collaboration with Pieter de Tombe, created a new system to study heart tissue within a physiological environment.

They will present their work at the 63rd Biophysical Society Annual Meeting, to be held March 2 - 6, 2019 in Baltimore, Maryland.

"The heart needs to generate force and shorten at the same time to squeeze blood out; this is not usually something you see in in vitro heart models," Terracciano said.

Using tiny pieces of heart tissue with preserved structure and function, they were able to recapitulate the sequence of mechanical events as found in the body. This was done by creating a custom bioreactor that allows the tissue to shorten in sync with electrical stimulation.

To see whether the heart tissue in their system behaved like it would inside the body, they added noradrenaline and changed the workload on the tissue to simulate normal conditions and disease. The team observed changes in force similar to those observed in hearts in vivo..

The new aspects of this system is that contraction parameters can be promptly adjusted using computer algorithms to mimic normal or disease conditions, for example to recreate the stiffer conditions of high blood pressure.

"If you have high blood pressure, you affect how the heart cells work. We can recreate this condition to understand what happens at the level of the tissue," Terracciano said.

Pitoulis added, "We now have a unique tool to study the mechanical and electrical properties of heart tissue, as well as long-term changes that happen at the molecular level within the context of healthy heart or disease."

###

The Biophysical Society, founded in 1958, is a professional, scientific Society established to encourage development and dissemination of knowledge in biophysics. Its 9,000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories and government agencies. The Annual Meeting attracts over 6,000 attendees and features more than 900 posters and over 500 speakers. http://www.biophysics.org.

Media Contact

Sean Winkler
swinkler@biophysics.org
240-290-5606

http://www.biophysics.org 

Sean Winkler | EurekAlert!
Further information:
https://www.biophysics.org/news-room/science-at-bps-2019-new-device-mimics-beating-heart-with-tiny-pieces-of-heart-tissue

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>