Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compounds could be used to treat autoimmune disorders

29.05.2019

The immune system is programmed to rid the body of biological bad guys--like viruses and dangerous bacteria--but its precision isn't guaranteed. In the tens of millions of Americans suffering from autoimmune diseases, the system mistakes normal cells for malicious invaders, prompting the body to engage in self-destructive behavior. This diverse class of conditions, which includes Type I diabetes, lupus, and multiple sclerosis, can be very difficult to treat.

In a new report in Nature Communications, researchers in the laboratory of Thomas Tuschl describe their development of small molecules that inhibit one of the main enzymes implicated in misguided immune responses. This research could lead to new treatments for people with certain autoimmune disorders and, more broadly, sheds light on the causes of autoimmunity.


Newly-developed molecules bind to a key enzyme pocket to inhibit its activity, and possibly prevent autoimmune responses.

Credit: Laboratory of RNA Molecular Biology at The Rockefeller University

Usage Restrictions: Image may be used to illustrate the research described in the accompanying release.

Cellular security

In eukaryotes, including humans, DNA typically resides in a cell's nucleus, or in other sequestered organelles such as mitochondria. So if DNA is found outside of these compartments--in the cell's cytosol--the immune system goes into high alert, assuming the genetic material was leaked by an invading bacterium or virus.

In 2013, researchers discovered an enzyme called cyclic GMP-AMP synthase, or cGAS, that detects and binds to cytosolic DNA to initiate a chain reaction--a cascade of cellular signaling events that leads to immune activation and usually ends with the destruction of the DNA-shedding pathogen.

Yet, cytosolic DNA isn't always a sign of infection. Sometimes it's produced by the body's own cells--and cGAS does not discriminate between infectious and innocuous DNA. The enzyme will bind to perfectly harmless genetic material, prompting an immune response even in the absence of an intruder.

"There is no specificity. So in addition to sensing foreign microbial DNA, cGAS will also sense aberrant cytosolic DNA made by the host," says postdoctoral associate Lodoe Lama. "And this lack of self versus non-self specificity could be driving autoimmune reactions."

Since the discovery of cGAS, researchers in the Tuschl laboratory have sought to understand its potential clinical relevance. If autoimmune disorders are the result of an erroneously activated immune system, then perhaps, they believe, a cGAS inhibitor could be used to treat these conditions.

Until now, no potent and specific small-molecule compound existed to block cGAS in human cells, though the researchers previously identified one that can do the job in mouse cells. Hoping to fill this gap, Tuschl's team collaborated with Rockefeller's High-Throughput and Spectroscopy Resource Center to scan through a library of almost 300,000 small molecules, searching for one that might target human cGAS.

Building a blocker

Through their screen, the researchers identified two molecules that showed some activity against cGAS--but this result was just the beginning of a long process towards developing an inhibitor that might be used in a clinical setting.

"The hits from library compounds were a great starting point, but they were not potent enough," says Lama. "So we used them as molecular scaffolds on which to make improvements, altering their structures in ways that would increase potency and also reduce toxicity."

Working with the Tri-Institutional Therapeutics Discovery Institute, the researchers modified one of their original scaffolds to create three compounds that blocked cGAS activity in human cells--making them the first molecules with this capability. Further analysis by researchers at Memorial Sloan Kettering Cancer Center revealed that the compounds inhibit cGAS by wedging into a pocket of the enzyme that is key to its activation.

The compounds are now being further optimized for potential use in patients, with an initial focus on treatment of the rare genetic disease Aicardi-Goutières syndrome. People with this condition accumulate abnormal cytosolic DNA that activates cGAS, leading to serious neurological problems. A drug that blocks the enzyme would therefore be of tremendous therapeutic value to those with the disease, who currently have few treatment options.

"This class of drug could potentially also be used to treat more common diseases, such as systemic lupus erythematosus, and possibly neurodegenerative diseases that include inflammatory contributions, such as Parkinson's disease," says Tuschl.

Further, the researchers believe that these compounds could serve as practical laboratory tools.

"Scientists will now have simple means by which to inhibit cGAS in human cells," says Lama. "And that could be immensely useful for studying and understanding the mechanisms that lead to autoimmune responses."

Media Contact

Katherine Fenz
kfenz@rockefeller.edu
212-327-7913

 @rockefelleruniv

http://www.rockefeller.edu 

Katherine Fenz | EurekAlert!
Further information:
https://www.rockefeller.edu/news/25972-new-compounds-used-treat-autoimmune-disorders/
http://dx.doi.org/10.1038/s41467-019-08620-4

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>