Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New chemical weapon to combat cancer

24.10.2019

UNIGE researchers have discovered a new combination of drugs that is effective in fighting cancer cells without affecting healthy cells

The fight against cancer involves eradicating cancer cells but current treatments inevitably have negative consequences on healthy cells. Patients often develop a resistance to the drugs and suffer from side effects due to the doses used in the treatments. How can this two-fold problem be managed?


Multipolar melanoma cells stained for centrosomes (gamma-tubulin in red, centrin in green) and DNA (DAPI in blue). Scale bar represents 5 μm.

Credit. © UNIGE

Scientists from the University of Geneva (UNIGE), Switzerland, analysed 200 combinations of different anti-tumour drugs in an attempt to reduce the doses. They employed a new technique to test the impact of a combination on a cancer cell and healthy cell simultaneously.

The researchers discovered a highly promising mix of four components, called C2, that can kill tumour cells while leaving healthy cells undamaged. You can read about these very hopeful results in the journal Cancers.

The drugs that attack tumours have to be aggressive for them to be effective. The balance between destroying cancer cells and the collateral damage inflicted on healthy cells is, however, a constant challenge. High doses of an anti-cancer drug can cause two main types of damage: progressive resistance to the drugs as the body acclimatises to the massive doses; and unwanted side effects on the patient's healthy cells.

How, then, can we combat cancer without harming the patient? "The main objective is to reduce the doses of the drugs so we can avoid resistance", explains Patrycja Nowak-Sliwinska, a professor in the Institute of Pharmaceutical Sciences of Western Switzerland and at UNIGE and in the university's Translational Research Centre in Onco-Haematology (CRTOH). "That's why we're creating new formulas made up of several low-dose treatments that will help us achieve our goal without inducing any resistance."

Testing new formulas simultaneously

The UNIGE researchers focused on ten substances used to fight cancer, producing some 200 possible combinations. "We used a method we developed in our laboratory to test these different combinations simultaneously in vitro on a cancer cell and on a healthy cell. The aim was to directly compare the effects of the treatment on the two types of cells", continues professor Nowak-Sliwinska. "We were able to eliminate the formulas that didn't destroy the diseased cells together with those that also had an impact on the healthy cells."

Thanks to this simultaneous validation technique, the UNIGE researchers identified the most effective combinations with the fewest possible side effects on healthy cells, with one in particular standing out: C2.

Highly promising new cancer treatment

C2 - which consists of four products (tubacin, CI-994, erlotinib and dasatinib) - is developing a new and highly promising mechanism of action. "During our in vitro tests, we found that C2 killed up to 20 times more cancer cells than other combinations, while sparing healthy cells", explains Patrick Meraldi, a professor in the Department of Cellular Physiology and Metabolism in UNIGE's Faculty of Medicine and at the CRTOH.

The special characteristic of C2 is that it targets the supernumerary centrosomes that are only found in tumour cells. "Each cell is equipped with two centrosomes, organelles that allow it to divide in two by each 'pulling' one half of the cell", explains professor Meraldi. As for the cancer cells, they have more centrosomes that tug the cell in three or four directions during its division, which leads to cell death.

To prevent this, the cancer cells group the centrosomes into two poles. "C2 blocks the grouping, causing a cell death specific to the tumour cells with supernumerary centrosomes, while leaving the healthy cells unharmed", continues the Geneva-based researcher.

There is a drug currently on the market that also induces divisions in three or four directions: Paclitaxel. But high doses are required, which causes numerous side effects in patients.

"That's why we want to replace the use of Paclitaxel with C2 or by a combination of both that would reduce the risk of resistance and toxicity", says professor Nowak-Sliwinska. To do this, the UNIGE researchers have filed a patent for the C2 combination and are currently in the in vivo test phase on mice so they can observe the effects of this new formula on the entire body and not just on an isolated cell. A treatment of great promise is on the horizon.

Media Contact

Patrycja Nowak-Sliwinska
Patrycja.Nowak-Sliwinska@unige.ch
41-223-793-352

 @UNIGEnews

http://www.unige.ch 

Patrycja Nowak-Sliwinska | EurekAlert!
Further information:
http://dx.doi.org/10.3390/cancers11101612

Further reports about: UNIGE cancer cells cell death healthy cell healthy cells tumour tumour cells

More articles from Life Sciences:

nachricht Generation of mouse induced pluripotent stem cells succeeds better without Oct4
08.11.2019 | Max-Planck-Institut für molekulare Biomedizin

nachricht Solution of the high-resolution crystal structure of stress proteins from Staphylococcus
07.11.2019 | Kazan Federal University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

Im Focus: An amazingly simple recipe for nanometer-sized corundum

Almost everyone uses nanometer-sized alumina these days - this mineral, among others, constitutes the skeleton of modern catalytic converters in cars. Until now, the practical production of nanocorundum with a sufficiently high porosity has not been possible. The situation has changed radically with the presentation of a new method of nanocorundum production, developed as part of a German-Polish cooperation of scientists from Mülheim an der Ruhr and Cracow.

High temperatures and pressures, processes lasting for even dozens of days. Current methods of producing nanometer-sized alumina, a material of significant...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Turbulence creates ice in clouds

08.11.2019 | Earth Sciences

Manganese nodules: project on environmental impact during deep sea mining

08.11.2019 | Earth Sciences

Laser versus weeds: LZH shows Farming 4.0 at the Agritechnica

08.11.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>