Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ceria nanoparticles attack Parkinson's disease from three fronts

30.07.2018

By removing reactive oxygen molecules, ceria nanoparticles reduce signs of Parkinson's disease in mouse neurons

Researchers at the Center for Nanoparticle Research, within the Institute for Basic Science (IBS, South Korea), have developed a set of nanoparticles for Parkinson's disease treatment. Tested in mice and published in Angewandte Chemie as a "hot paper", this study represents the first biomedical application of nanoparticles in the clearance of reactive oxygen by-products in Parkinson's, and gives new hints of therapeutic targets.


Ceria, TPP-ceria, and cluster-ceria nanoparticles target intracellular, mitochondrial, and extracellular reactive oxygen species, respectively.

Credit: IBS

In the future, the system is expected to be used in the identification and treatment of other pathologies caused by reactive oxygen species, including: cancers, cardiovascular diseases, neurodegenerative diseases, and sepsis.

Parkinson's disease is characterized by the sudden degeneration and death of neurons that secrete dopamine in the brain. Accumulation of reactive oxygen species damages the neurons, by contributing to the onset of mitochondrial dysfunction, neuroinflammation, and neuronal death.

The brain's low antioxidant levels and abundance of lipids, make it more vulnerable to the side effects of reactive oxygen species, including free radicals.

The oxidative stress caused by these molecules inside mitochondria, together with neuroinflammation due to intracellular and extracellular oxidative stress are considered important causes of Parkinson's disease.

Until now, there has been no technique to selectively clear reactive oxygen species, nor to distinguish their effect according to their cellular localization. To solve these problems, IBS nanoparticle researchers have devised three types of ceria nanoparticles with different sizes and surface properties, capable of selectively removing reactive oxygen species from mitochondria, intracellular, and extracellular spaces.

Ceria nanoparticles aimed at the intracellular spaces have a size of 11 nm, which is small enough to enter the cell, and a negative surface charge (ζ-potential: -23 mV) which prevents them from entering the mitochondria membrane. The ceria nanoparticle targeting oxygen free radicals in mitochondria are decorated with triphenylphosphonium (TPP), which confers them a positive surface charge of +45 mV.

Finally, nanoparticle clusters of hundreds of thousands of 3 nm ceria nanoparticles with a size of 400 nm and a negative surface charge, are capable of removing reactive oxygen species while remaining outside the cell.

The nanoparticles delivered to a part of the brain, called corpus striatum, in mouse models improved the typical signs of Parkinson's disease: neuro-inflammation, oxidative stress, and diminishing level of the enzyme tyrosine hydroxylase - a hallmark of Parkinson's disease - which produces a dopamine precursor and affects mobility.

Attacking oxidative stress and neuroinflammation from three different fronts allowed IBS scientists to pinpoint the most critical therapeutic targets. In particular, removing reactive oxygen species in extracellular spaces with cluster-ceria nanoparticles diminished neuro-inflammation, but did not show any effect in reducing oxidative stress and maintaining normal levels of tyrosine hydroxylase.

Instead, mice treated with ceria nanoparticles and the TPP-ceria nanoparticles had significantly higher tyrosine hydroxylase levels than the controls. The results suggest that lowering oxidative stress in intracellular and/or mitochondrial compartments is important to treat Parkinson's disease.

"These experiments have identified the essential role of intracellular and mitochondrial reactive oxygen species in the progression and treatment of Parkinson's disease. We hope that the ceria nanoparticle system will be useful tools for developing therapeutic agents in diseases that involve oxidative stress, as well as other degenerative diseases," explains KWON Hyek Jin, first author of the study.

"This result is not only the first to develop a technique to selectively remove reactive oxygen species from intracellular, extracellular, and mitochondrial spaces, but also to investigate the effects of Parkinson's disease, the cause of the disease, and a new medical application of nanoparticles," explains HYEON Taeghwan, the corresponding author of the study.

Ceria nanoparticles work like artificial antioxidants by mimicking the activity of natural antioxidants, like catalase- and superoxide dismutase (SOD). Cerium ions on the surface switch between Ce3+ and Ce4+ in the presence of reactive oxygen species. In the past, the recyclable function of the ceria nanoparticles has been exploited by the same research group in animal models of ischemic stroke, and Alzheimer's disease.

Media Contact

Dahee Carol Kim
clitie620@ibs.re.kr
82-428-788-133

 @IBS_media

http://www.ibs.re.kr/en/ 

Dahee Carol Kim | EurekAlert!
Further information:
http://dx.doi.org/10.1002/ange.201805052

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>