Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ceria nanoparticles attack Parkinson's disease from three fronts

30.07.2018

By removing reactive oxygen molecules, ceria nanoparticles reduce signs of Parkinson's disease in mouse neurons

Researchers at the Center for Nanoparticle Research, within the Institute for Basic Science (IBS, South Korea), have developed a set of nanoparticles for Parkinson's disease treatment. Tested in mice and published in Angewandte Chemie as a "hot paper", this study represents the first biomedical application of nanoparticles in the clearance of reactive oxygen by-products in Parkinson's, and gives new hints of therapeutic targets.


Ceria, TPP-ceria, and cluster-ceria nanoparticles target intracellular, mitochondrial, and extracellular reactive oxygen species, respectively.

Credit: IBS

In the future, the system is expected to be used in the identification and treatment of other pathologies caused by reactive oxygen species, including: cancers, cardiovascular diseases, neurodegenerative diseases, and sepsis.

Parkinson's disease is characterized by the sudden degeneration and death of neurons that secrete dopamine in the brain. Accumulation of reactive oxygen species damages the neurons, by contributing to the onset of mitochondrial dysfunction, neuroinflammation, and neuronal death.

The brain's low antioxidant levels and abundance of lipids, make it more vulnerable to the side effects of reactive oxygen species, including free radicals.

The oxidative stress caused by these molecules inside mitochondria, together with neuroinflammation due to intracellular and extracellular oxidative stress are considered important causes of Parkinson's disease.

Until now, there has been no technique to selectively clear reactive oxygen species, nor to distinguish their effect according to their cellular localization. To solve these problems, IBS nanoparticle researchers have devised three types of ceria nanoparticles with different sizes and surface properties, capable of selectively removing reactive oxygen species from mitochondria, intracellular, and extracellular spaces.

Ceria nanoparticles aimed at the intracellular spaces have a size of 11 nm, which is small enough to enter the cell, and a negative surface charge (ζ-potential: -23 mV) which prevents them from entering the mitochondria membrane. The ceria nanoparticle targeting oxygen free radicals in mitochondria are decorated with triphenylphosphonium (TPP), which confers them a positive surface charge of +45 mV.

Finally, nanoparticle clusters of hundreds of thousands of 3 nm ceria nanoparticles with a size of 400 nm and a negative surface charge, are capable of removing reactive oxygen species while remaining outside the cell.

The nanoparticles delivered to a part of the brain, called corpus striatum, in mouse models improved the typical signs of Parkinson's disease: neuro-inflammation, oxidative stress, and diminishing level of the enzyme tyrosine hydroxylase - a hallmark of Parkinson's disease - which produces a dopamine precursor and affects mobility.

Attacking oxidative stress and neuroinflammation from three different fronts allowed IBS scientists to pinpoint the most critical therapeutic targets. In particular, removing reactive oxygen species in extracellular spaces with cluster-ceria nanoparticles diminished neuro-inflammation, but did not show any effect in reducing oxidative stress and maintaining normal levels of tyrosine hydroxylase.

Instead, mice treated with ceria nanoparticles and the TPP-ceria nanoparticles had significantly higher tyrosine hydroxylase levels than the controls. The results suggest that lowering oxidative stress in intracellular and/or mitochondrial compartments is important to treat Parkinson's disease.

"These experiments have identified the essential role of intracellular and mitochondrial reactive oxygen species in the progression and treatment of Parkinson's disease. We hope that the ceria nanoparticle system will be useful tools for developing therapeutic agents in diseases that involve oxidative stress, as well as other degenerative diseases," explains KWON Hyek Jin, first author of the study.

"This result is not only the first to develop a technique to selectively remove reactive oxygen species from intracellular, extracellular, and mitochondrial spaces, but also to investigate the effects of Parkinson's disease, the cause of the disease, and a new medical application of nanoparticles," explains HYEON Taeghwan, the corresponding author of the study.

Ceria nanoparticles work like artificial antioxidants by mimicking the activity of natural antioxidants, like catalase- and superoxide dismutase (SOD). Cerium ions on the surface switch between Ce3+ and Ce4+ in the presence of reactive oxygen species. In the past, the recyclable function of the ceria nanoparticles has been exploited by the same research group in animal models of ischemic stroke, and Alzheimer's disease.

Media Contact

Dahee Carol Kim
clitie620@ibs.re.kr
82-428-788-133

 @IBS_media

http://www.ibs.re.kr/en/ 

Dahee Carol Kim | EurekAlert!
Further information:
http://dx.doi.org/10.1002/ange.201805052

More articles from Life Sciences:

nachricht Family of crop viruses revealed at high resolution for the first time
15.10.2019 | John Innes Centre

nachricht Receptor complexes on the assembly line
15.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Shipment tracking for 'fat parcels' in the body

15.10.2019 | Life Sciences

An ultrafast glimpse of the photochemistry of the atmosphere

15.10.2019 | Physics and Astronomy

Unlocking the biochemical treasure chest within microbes

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>