Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018

Findings of Cedars-Sinai-led study suggest ways to improve therapies for heart attacks and stroke

Investigators have identified a new cellular pathway that may help explain how arterial inflammation develops into atherosclerosis--deposits of cholesterol, fats and other substances that create plaque, clog arteries and promote heart attacks and stroke. The findings could lead to improved therapies for atherosclerosis, a leading cause of death worldwide.


Atherosclerotic lesions appear in red in this image of a mouse aorta.

Credit: Cedars-Sinai

"We have known for decades that atherosclerosis is a disease of chronic inflammation that ultimately results in the scarring of arteries and tissue damage," said Moshe Arditi, MD, director of the Infectious and Immunologic Disorders Translational Research Center in the Department of Biomedical Sciences at Cedars-Sinai. "But the ongoing stimulus for this inflammation has been unclear."

A study published today in the journal Cell Metabolism sheds light on this mystery by using a bacterial infection to reveal a cascade of cellular events that can lead to inflammation and atherosclerosis. Arditi is the co-senior author and the lead author of the study, which was led by investigators at Cedars-Sinai.

Investigators focused on interleukin-1 beta, a type of protein that is assembled and released by immune system cells in response to infection and injury, including tissue damage caused by atherosclerosis. While interleukin-1 beta helps rally the immune system against these threats, it also can cause chronic inflammation. The study team wanted to understand how the interleukin-1 beta pathway might promote atherosclerosis.

Using laboratory mice bearing a bacterial infection, along with human cells cultured in a petri dish, the team discovered that several harmful processes related to interleukin-1 beta can lead to buildup of cholesterol in the arteries:

  • To make its way out of the immune system cell, interleukin-1 beta can also use the same chemical channels that are used by cholesterol to exit the cell. The result is a "traffic rush" on those channels that blocks the exit of artery-damaging cholesterol and causes it to accumulate in the cell.
  • Once it is released by the cell into the body, interleukin-1 beta suppresses a chemical receptor that enables niacin, or Vitamin B3, to be used in the body. This action is harmful because niacin works by removing cholesterol from cells in the artery walls. When niacin is blocked, cholesterol can accumulate in the walls.
  • The suppression of the niacin receptor has another negative effect: It reduces the number of chemical channels that cholesterol uses to exit the immune system cell, causing more cholesterol to be trapped inside. That is because the niacin receptor, besides enabling niacin, also increases these channels as part of its normal function.

Arditi said these discoveries are especially significant because drugs that inhibit interleukin-1 beta have shown promise in combatting atherosclerosis and heart disease. A major clinical trial, led by another research institution and published last year, reported that administering one such drug to patients who had a prior heart attack reduced inflammation and lowered the risk of another cardiovascular event.

The Cedars-Sinai study raises the possibility that by using drugs to block the initial production of interleukin-1 beta, rather than just neutralizing it, a stronger positive effect could be obtained for these patients, said Arditi, professor of Pediatrics and Biomedical Sciences.

Prediman K. Shah, MD, director of the Atherosclerosis Prevention and Management Center at Cedars-Sinai, noted that a drug, colchicine, already exists that blocks interleukin-1 beta production, but it is FDA-approved only to treat gout and Mediterranean fever. Two clinical trials are underway elsewhere to evaluate the drug's potential for treating atherosclerosis and preventing heart attacks.

In addition, Shah, a professor of Medicine who was not involved in the Cedars-Sinai study, said, "A very intriguing aspect of these findings is that they could prompt a re-examination of niacin therapy for atherosclerosis and heart disease." He explained that physicians long used niacin to treat atherosclerosis until the 1980s, when statin drugs were shown to be more effective at reducing cholesterol and cardiovascular risk.

The newly released study suggests that combining niacin with an interleukin-1 beta inhibitor might enhance niacin therapy by making niacin more available to the body, Arditi said.

###

Besides Arditi, the other co-senior author of the new study is Shuang Chen, MD, PhD, assistant professor of Pediatrics and Biomedical Sciences at Cedars-Sinai. The first authors are Gantsetseg Tumurkhuu, PhD, a postdoctoral scientist in Arditi's lab, and Jargalsaikhan Dagvadorj, PhD, a research scientist in that lab.

Research reported in this publication was supported by the National Institutes of Health under award numbers HL111483, AI105845 and HL066436.

Media Contact

Jane Engle
Jane.Engle@cshs.org
310-248-8545

 @cedarssinai

http://www.csmc.edu 

Jane Engle | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.cmet.2018.05.027

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>