Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New catalysts remove NOx pollutants at lower temperatures

18.11.2019

Bulk 'defective' vanadium oxide for NOx removal from industrial exhaust at temperatures lower than 150 degrees Celsius

Scientists from Tokyo Metropolitan University have developed a low-temperature catalyst for removing NOx gas from industrial exhaust using ammonia. Composed of bulk "defective" vanadium oxide instead of vanadium oxides supported on titanium oxide like in commercial catalysts, the catalyst works at lower temperatures (< 150 degrees Celsius) with much higher efficiency.


Conversion rate of nitrogen oxides at different temperatures for conventional, V(V) oxide and V(IV)+V(V) oxide "defective" catalysts. The mixture of V(V) and V(IV) oxides showed a 10-fold improvement in the 100 - 150 degrees Celsius range.

Credit: Tokyo Metropolitan University

The team demonstrated a clear improvement in performance, and identified the reaction mechanisms responsible for the difference.

Nitrogen monoxide (NO) and nitrogen dioxide (NO2), or nitrogen oxides (NOx), are common atmospheric pollutants created by burning fossil fuels, coal and natural gas. They are a major cause of photochemical smog and acid rain, which makes their removal from vehicle and factory emissions extremely important.

A key technology for removing nitrogen oxides is their reaction with ammonia via selective catalytic reduction (SCR), where NOx is rendered harmless via reduction to nitrogen and water. In particular, vanadium oxides supported on titania are known to have excellent selectivity for conversion to nitrogen, and have been successfully applied to stationary boilers.

However, a significant bottleneck for supported catalysts is the high temperature required for catalytic activity, often 200 to 400 degrees Celsius. This often results in units being placed close to e.g. the boiler in power plants, where they can be easily damaged not only physically by ash but by the accumulation of ammonium sulfates.

These deactivating factors can be avoided if the unit is placed downstream after an electrostatic precipitator for removing dust and a desulfation system to remove sulfate deposits. However, this approach requires high catalytic activity at lower temperatures, since the temperature of the exhaust gas has generally dropped to around 100 degrees Celsius by this point. A catalyst is needed that works at lower temperatures.

Now, a team led by Yusuke Inomata and Toru Murayama from Tokyo Metropolitan University have developed a catalyst based on bulk vanadium oxides. Vanadium (V) oxide (V2O5) is a common state of vanadium oxide; the team however successfully synthesized a mixture of vanadium (V) and vanadium (IV) oxides, or "defective" vanadium oxide, by heating a precursor to 270 degrees Celsius.

They found that this "defective" catalyst had excellent catalytic activity at temperatures down to 100 degrees Celsius; at this temperature, the speed at which NOx is converted to harmless nitrogen was 10 times faster than conventional titania supported vanadium oxide catalysts, showing exceptional performance where convertional catalysts fall short. The improvement was attributed to the presence of V(IV) which creates "Lewis acid" (electron-accepting) sites, promoting the reaction of nitrogen oxide with ammonia to become nitrogen.

Beyond practical application to industrial catalysis, the team hope that the mechanisms they have uncovered serve as a model system for further scientific studies.

###

This work was collabolated with the Chugoku Electric Power Company, Incorporated, and was partially supported by the Cooperative Research Program of the Institute for Catalysis, Hokkaido University (Grant #19B1016).

Media Contact

Go Totsukawa
totsukawa-go@jmj.tmu.ac.jp
81-426-772-728

 @TMU_PR

https://www.tmu.ac.jp/english/ 

Go Totsukawa | EurekAlert!
Further information:
https://doi.org/10.1021/acscatal.9b02695
http://dx.doi.org/10.1021/acscatal.9b02695

Further reports about: NOx acid ammonia catalysts catalytic activity nitrogen nitrogen oxides

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>