Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New catalyst to create chemical building blocks from biomass

23.02.2015

University of Tokyo researchers have developed a novel selective catalyst that allows the creation of several basic chemicals from biomass instead of petroleum. This discovery may lead to the use of plant biomass as a basic feedstock for the chemical industry.

The new catalyst developed by Professor Kyoko Nozaki's research group at the Graduate School of Engineering enables selective cleaving (hydrogenolysis) of carbon-oxygen (C-O) single bonds in phenols and aryl methyl ethers, two of the main components of lignin.


This depicts the mechanism of selective hydrogenation of the carbon-oxygen bond by concerted action of the ligand and the metal.

© 2015 Kyoko Nozaki

Lignin is a major component of plant dry matter and has the potential to replace petroleum as the primary source of basic aromatic chemicals such as BTX (benzene, toluene, and xylene) and phenol. Producing these building blocks from lignin requires the selective hydrogenolysis of C-O bonds in phenols and aryl ethers, but their aromatic rings are also susceptible to hydrogenation.

Using their new catalyst, the research group accomplished selective C-O bond hydrogenolysis without also cleaving the aromatic rings for the first time ever.

Professor Nozaki's research group employed hydroxycyclopentadienyl iridium complexes as catalysts under hydrogen (dihydrogen) at atmospheric pressure. Using these new catalysts, arenols (phenol derivatives) were successfully deoxygenated to afford the corresponding arenes.

In addition, aryl methyl ethers were converted selectively to arenols after demethylation with dihydrogen using the same catalysts.

"This study shows the potential of our catalysts for application to the mass use of lignin as feedstock for production of basic aromatic chemicals for the chemical industry, instead of using fossil fuels," says Professor Nozaki. "Our final goal is to contribute to the creation of a sustainable society that makes efficient use of renewable resources."

Journal article

Shuhei Kusumoto and Kyoko Nozaki, "Direct and Selective Hydrogenolysis of Arenols and Aryl Methyl Ethers" Nature Communications on 23rd February 2015. DOI: 10.1038/ncomms7296

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Links

The University of Tokyo http://www.u-tokyo.ac.jp/en/
Graduate School of Engineering http://www.t.u-tokyo.ac.jp/etpage/
Department of Chemistry and Biotechnology http://www.chembio.t.u-tokyo.ac.jp/e/

Research contact information

Professor Kyoko Nozaki
Department of Chemistry and Biotechnology
Graduate School of Engineering
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Email: nozaki@chembio.t.u-tokyo.ac.jp
Tel: +81-3-5841-7261
Fax: +81-3-5841-7263

Kyoko Nozaki | EurekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>