Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New AUV plankton sampling system deployed

18.08.2015

A group of Woods Hole Oceanographic Institution (WHOI) researchers and engineers have developed and tested an innovative new system for sampling small planktonic larvae in coastal ocean waters and understanding their distribution.

Results were published online July 30, 2015 in the Journal of Experimental Marine Biology and Ecology.


The researchers targeted barnacles because their reproductive biology is well known, and the scientists knew when and where larvae would be abundant. Adult barnacles are sessile (shown), but the planktonic larvae travel and disperse with water movements. Several barnacle species co-occur in coastal Massachuetts waters, but little is known of how their larvae behave and distribute differently in the water column.

Photo by Julie van der Hoop

Traditionally, pumps and nets are used for sampling plankton, which require sampling at predetermined stations or towing nets behind a ship, followed by visually sorting collected organisms into taxonomic groups. Samples generally combine organisms collected throughout horizontal or vertical tracks, making it impossible to detect small gradations or species-specific patterns in larval distribution.

The sampling system combines three cutting edge technologies--an adapted Suspended Particulate Rosette (SUPR) multi-sampler, a REMUS autonomous underwater vehicle equipped with sensors, and identification of organisms by DNA barcode analysis. They've dubbed the new system "SUPR-REMUS."

"SUPR-REMUS lets us take discrete samples in the water, in a way that nets can't do in shallow water," said Annette Govindarajan, lead author on the paper. The new system is already yielding insight into spatial distribution of invertebrate larvae.

The group deployed the vehicle, which they named "SUPR-REMUS," in Buzzards Bay, Mass., twice during March 2014, when barnacle larvae were abundant. The REMUS 600 carried a CTD sensor to measure and record conductivity, temperature, and depth. The researchers performed genetic barcode analysis of the collected larvae and deduced species distributions.

"Plankton nets that take discrete samples, such as multiple opening-closing systems, are meant for use in open water," said Govindarajan. "Our goal was to sample in shallow water, and close to the bottom for larvae of coastal benthic invertebrates."

The researchers targeted barnacles because their reproductive biology is well known, and the scientists knew when and where larvae would be abundant. Adult barnacles are sessile, but the planktonic larvae travel and disperse with water movements. Several barnacle species co-occur in coastal Massachuetts waters, but little is known of how their larvae behave and distribute differently in the water column.

"Traditional sampling doesn't give us fine-scale information," said biologist and co-author Jesús Pineda. "Larvae often accumulate in small-scale features such as ocean fronts, where temperature and salinity vary at small distances. We need a sampling device that can resolve these spatial scales and take multiple samples. With this sampler we can initiate autonomous sampling remotely, in response to a change in the environment--such as a change in water temperature--that we suspect initiates larval transport."

Team members also included WHOI Adjunct Scientist Chip Breier and WHOI Principal Engineer Mike Purcell.

The team modified the SUPR sampler to fit in the front section of a REMUS 600, with additional foam and weights for buoyancy and trim. A flow meter measured seawater volume, which was pumped through external ports at predetermined times, and multiple 200um-mesh filters retained the plankton from separate samples.

On two days in March the team launched the SUPR-REMUS to conduct transects perpendicular to the coastline. On the first mission it traveled from the surface to about 15m. deep in a sawtooth ("yo-yo") vertical pattern over a 9.9 km distance. The second deployment was more complex: The AUV's upper and lower track boundaries were programmed relative to the surface and to the sea floor, over a 11.2 km distance.

"The deployments were challenging as the weather at the time was frigid, but we were very pleased with how SUPR-REMUS performed," said Annette Govindarajan.

Barnacle larvae progress through multiple planktonic stages , termed "nauplii" and "cyprids", before settling to the bottom. Larvae of different species can appear nearly identical, and traditional identification methods are based on detailed microscopic examination, a process that can take a long time.

Instead, the researchers used genetic barcode analysis, short gene sequences that are diagnostic for numerous invertebrate species. They identified a total of 164 barnacle larvae under a dissection microscope, extracted DNA from the larvae, and used standard techniques to sequence mitochondrial COI genes, often called a barcode sequence. The researchers compared the larval sequences to known sequences published in GenBank and to sequences from local adult barnacles.

They found the barnacle larvae were abundant, up to 950 larvae per cubic meter of water. Larvae were of three species--Amphibalanus sp., Semibalanus balanoides, and Chthamalus fragilis--with Amphibalanus sp. by far the most abundant. The researchers saw some patterns in distribution, but need to conduct a larger survey before drawing conclusions.

Overall, Govindarajan said the project met the primary objective, testing the feasibility of SUPR-REMUS for sampling in coastal waters: "We were thrilled with the first results for robotic sampling coupled with genetic analysis. We got interesting results, learned from it, and plan to deploy again this fall."

###

The work was funded internally through the Cecil H. and Ida M. Green Technology Innovation Award and the Alfred M. Zeien Endowed Fund for Innovative Ocean Research. The team has funding from the Massachusetts Institute of Technology Sea Grant Program to use SUPR-REMUS in fall 2015.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit http://www.whoi.edu.

Media Contact

WHOI Media Office
media@whoi.edu
508-289-3340

 @WHOImedia

http://www.whoi.edu 

WHOI Media Office | EurekAlert!

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>