Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach in the fight against viruses

05.08.2019

In the ViroSens project, researchers from the Fraunhofer-Gesellschaft in Sulzbach and Regensburg are working together with industrial partners on a novel analytical method to make the potency testing of vaccines more efficient and cost-effective. The method combines electrochemical sensor technology and biotechnology and, for the first time, enables a completely automated analysis of the infection status of test cells.

Most people see vaccinations as a benefit of modern medicine, as they protect against dangerous viral diseases. However, before a vaccine can enter the doctor‘s surgery, it is first tested for its effectiveness in order to ensure reliable protection.


Multi-Electrode Layout for Parallel Analysis of Multiple Cell Samples in Microfluic-Chips.

Fraunhofer EMFT, Bernd Müller

These tests are typically carried out in the laboratory on cultured cells. First the blood serum of a previously vaccinated person is injected into the cell culture, then the test cells are exposed to a virus infection. If the vaccination was successful, the serum contains sufficient neutralizing antibodies against the viruses and the virus contact has no consequences.

This serves as a proof of the efficacy of a vaccine. If the vaccination was not efficient enough, the antibody titres in the serum are not sufficient to completely intercept the viral load. The cells used for the test are then defenceless against the viruses and are infected.

To date, a possible infection of the test cells is analyzed using labour-intensive and expensive staining methods which has an increasingly limiting effect in view of the enormous number of tests required for vaccine development.

Scientists of the Fraunhofer Institute for Biomedical Engineering IBMT in Sulzbach/Saar and the Fraunhofer Facility for Microsystems and Solid State Technologies EMFT on the campus of the University of Regensburg are currently working together with the companies nanoAnalytics GmbH (Münster) and innoMe GmbH (Espelkamp) on a novel solution for the measurement of antiviral neutralizing antibodies.

For this purpose, the test cells are placed on multi-electrode arrays, which allow their infection status to be recorded completely automatically with the aid of electrochemical measuring methods. This replaces the costly staining reactions of conventional tests, which saves time and money.

Another advantage of the new method is that the cells are continuously monitored over a longer period of time. With the previously used staining methods, they are only analyzed at a specific point in time. This provides the researchers with additional information on the time course of the cell reaction that was previously not available.

The consortium has set itself the goal of researching a complete system, including the measuring device, the associated analysis software and the electrode arrays required for cell observation, and implementing it in laboratory set-ups that will pave the way for a later market launch.

The „ViroSens“ project is funded by the Federal Ministry of Education and Research (BMBF) under the KMUinnovativ funding guideline with a total amount of around €2 Million.

Wissenschaftliche Ansprechpartner:

Prof. Hagen von Briesen l Fraunhofer IBMT l Phone +49 6897 9071-286 Hagen.Briesen@ibmt.fraunhofer.de

Prof. Joachim Wegener l Fraunhofer EMFT l Phone +49 9471 943 45 46 Joachim.Wegener@emft.fraunhofer.de

Weitere Informationen:

https://www.ibmt.fraunhofer.de/en/ibmt-press-releases-2019/press-ViroSens-2019-0...

Dipl.-Phys. Annette Maurer-von der Gathen | Fraunhofer-Institut für Biomedizinische Technik IBMT

More articles from Life Sciences:

nachricht Fight diabetes with exercise
29.11.2019 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

nachricht Harnessing the power of CRISPR in space and time
29.11.2019 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Harnessing the power of CRISPR in space and time

29.11.2019 | Life Sciences

When plants bloom

29.11.2019 | Life Sciences

New evolutionary insights into the early development of songbirds

29.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>