Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrons helping ORNL researchers unlock secrets to cheaper ethanol

16.09.2010
New insight into the structure of switchgrass and poplars is fueling discussions that could result in more efficient methods to turn biomass into biofuel.

Researchers from the Department of Energy's Oak Ridge National Laboratory and Georgia Tech used small-angle neutron scattering to probe the structural impact of an acid pretreatment of lignocellulose from switchgrass.

Pretreatment is an essential step to extract cellulose, which can through a series of enzymatic procedures be converted into sugars and then ethanol. The findings, published in Biomacromolecules, could help scientists identify the most effective pretreatment strategy and lower the cost of the biomass conversion process.

"My hope is that this paper and subsequent discussions about our observations will lead to a better understanding of the complex mechanisms of lignocellulose breakdown," said co-author Volker Urban of ORNL's Chemical Sciences Division.

A key finding is that native switchgrass that has been pretreated with hot dilute sulfuric acid undergoes significant morphological changes. While the data demonstrate that the switchgrass materials are very similar at length scales greater than 1,000 angstroms, the materials are profoundly different at shorter lengths. An angstrom is equal to 1/10th of a nanometer.

Specifically, Urban and colleagues discovered that the diameter of the crystalline portion of a cellulose fibril increases from about 21 angstroms before treatment to 42 angstroms after treatment. Also, they learned that lignin concurrently undergoes a redistribution process and forms aggregates, or droplets, which are 300 angstroms to 400 angstroms in size.

"Our study suggests that hot dilute sulfuric acid pretreatment effectively decreases recalcitrance by making cellulose more accessible to enzymes through lignin redistribution and hemi-cellulose removal," Urban said. Recalcitrance refers to a plant's robustness, or natural defenses to being chemically dismantled.

Unfortunately, the apparent increase in cellulose microfibril diameter may indicate a cellulose re-annealing that would be counterproductive and may limit the efficiency of the dilute sulfuric acid pretreatment process, the researchers reported.

"Ultimately, the ability to extract meaningful structural information from different native and pretreated biomass samples will enable evaluation of various pretreatment protocols for cost-effective biofuels production," Urban said.

Small-angle neutron scattering measurements were performed at ORNL's High Flux Isotope Reactor and analyzed using the unified fit approach, a mathematic model that allows simultaneous evaluation of the different levels of hierarchical organization that are present in biomass.

Other authors of the paper were Sai Venkatesh Pingali, William Heller, Joseph McGaughey, Hugh O'Neill, Dean Myles and Barbara Evans of ORNL and Marcus Foston and Arthur Ragauskas of Georgia Tech. Support for the research and for HFIR was provided by DOE's Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

Further reports about: ORNL Science TV neutron scattering neutrons sulfuric acid uric acid

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>