Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutral evolution shapes lifespan and ageing

04.07.2019

The evolution of short lifespan in African killifish is explained by the lack of strong selection against deleterious mutations.

Different African killifish species vary extensively in their lifespans - from just a few months to several years. Scientists from the Max Planck Institute for Biology of Ageing in Cologne investigated how different lifespans have evolved in nature and discovered a fundamental mechanism by which detrimental mutations accumulate in the genome causing fish to age fast and become short-lived. In humans, mutations accumulate mainly in the genes that are active in old age.


The African Killifish (Nothobranchius furzeri) lives only a few months.

Max Planck Institute for Biology of Ageing


Max Planck Researcher Dario Riccardo Valenzano (left) and Rongfen Cui.

Max Planck Institute for Biology of Ageing

Species in nature vastly differ in lifespan, from a few hours in adult mayflies to centuries in whales. Natural selection should favour long-lifespan, because in principle a longer life leads to more offspring and higher chance to reproduce and transmit genes to the next generation.

But then why do short-lived species evolve? To address this question, Rongfeng Cui from Dario Valenzano’s group at the Max Planck Institute for Biology of Ageing, investigated the African killifish family.

“African killifishes live in a wide range of habitats, from rainforests to arid savanna woodlands. Based on the water availability in the environment, they live long or short. This great diversification constitutes a natural experiment of different lifespan strategies, making killifish a unique system for studying life history evolution”, explains Dario Riccardo Valenzano, senior author of this publication.

Expanded genome with detrimental mutations

The researchers sequenced and analysed the genome of 45 African killifish species and compared the genome of short- and long-lived species. They found that short-lived species have an expanded genome, full of highly redundant DNA sequences between and within genes.

Additionally, the genome of the short-lived fish accumulates detrimental mutations. Detrimental mutations occur throughout the genome, including in genes coding for central processes in the fishes, such as DNA repair, metabolism control, mitochondrial function and in other known ageing genes.

“These fishes do not seem to be short-lived because being short-lived is good for them or because it is an adaption to their environment. In fact, in longer rainy seasons they could in principle live longer and keep reproducing”, says Valenzano.

“Rather, natural selection simply does not work as efficiently for genes important in late life. It doesn’t matter if a mutation makes you a little bit sick when you are old, because you have reproduced already and transmitted that mutation to your offspring. We found that this basic principle explains the expanded genome and the accumulation of detrimental mutations in short-lived killifish.”

Human genomes

In the human genome the researchers could observe that genes which accumulate detrimental mutations are highly associated with ageing. “We found that the mutation burden of a gene goes hand-in-hand with when it is expressed. In other words, gene expressed in late life are more likely to carry detrimental gene variants”, explains Valenzano.

The researchers found many genes that met this criterion but were not known to be related to the aging process yet. These genes could be interesting for ageing research in future.

Wissenschaftliche Ansprechpartner:

Dario Riccardo Valenzano, dario.valenzano@age.mpg.de

Originalpublikation:

Rongfeng Cui, Tania Medeiros, David Willemsen, Leonardo N. M. Iasi, Glen E. Collier, Martin Graef, Martin Reichard, Dario Riccardo Valenzano
Relaxed Selection Limits Lifespan by Increasing Mutation Load.
Cell, June 21st 2019
https://doi.org/10.1016/j.cell.2019.06.004

Weitere Informationen:

http://www.age.mpg.de
https://www.youtube.com/watch?time_continue=3&v=qzfeIJ2j-sc

Dr. Maren Berghoff | Max-Planck-Institut für Biologie des Alterns

More articles from Life Sciences:

nachricht Machine learning microscope adapts lighting to improve diagnosis
20.11.2019 | Duke University

nachricht The neocortex is critical for learning and memory
20.11.2019 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>