Different neuronal groups govern right-left alternation when walking

The study, published in the journal Nature, demonstrates that two genetically-defined groups of nerve cells are in control of limb alternation at different speeds of locomotion, and thus that the animals' gait is disturbed when these cell populations are missing.

Most land animals can walk or run by alternating their left and right legs in different coordinated patterns. Some animals, such as rabbits, move both leg pairs simultaneously to obtain a hopping motion. In the present study, the researchers Adolfo Talpalar and Julien Bouvier together with professor Ole Kiehn and colleagues, have studied the spinal networks that control these movement patterns in mice. By using advanced genetic methods that allow the elimination of discrete groups of neurons from the spinal cord, they were able to remove a type of neurons characterized by the expression of the gene Dbx1.

“It was classically thought that only one group of nerve cells controls left right alternation”, says Ole Kiehn who leads the laboratory behind the study at the Department of Neuroscience. “It was then very interesting to find that there are actually two specific neuronal populations involved, and on top of that that they each control different aspect of the limb coordination.”

Indeed, the researchers found that the gene Dbx1 is expressed in two different groups of nerve cells, one of which is inhibitory and one that is excitatory. The new study shows that the two cellular populations control different forms of the behaviour. Just like when we change gear to accelerate in a car, one part of the neuronal circuit controls the mouse's alternating gait at low speeds, while the other population is engaged when the animal moves faster. Accordingly, the study also show that when the two populations are removed altogether in the same animal, the mice were unable to alternate at all, and hopped like rabbits instead.

There are some animals, such as desert mice and kangaroos, which only hop. The researchers behind the study speculate that the locomotive pattern of these animals could be attributable to the lack of the Dbx1 controlled alternating system.

The study was financed with grants from the Söderberg Foundation, Karolinska Institutet (Distinguished Professor Award), the Swedish Research Council, and the European Research Council (ERC advanced grant).

Publication: “Dual mode operation of neuronal networks Involved in left-right alternation”, Adolfo E Talpalar, Julien Bouvier, Lotta Borgius, Gilles Fortin, Alessandra Pierani, and Ole Kiehn, Nature, AOP 30 June 2013. EMBARGOED until Sunday 30 June 2013 at 1800 London time / 1900 CET / 1300 US EDT

Journal website: http://www.nature.com

Contact the Press Office and download images: ki.se/pressroom

Karolinska Institutet – a medical university: ki.se/english

Media Contact

Press Office EurekAlert!

More Information:

http://www.ki.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors