Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural networks: All versatility in one model

13.03.2018

Max Planck researchers Nataliya Kraynyukova and Tatjana Tchumatchenko have explored how the structure of neural networks is related to their ability to produce a set of fundamental cortical functions. They have shown that only one model is sufficient to explain the variety of cortical computations. In the latest issue of Proceedings of the National Academy of Sciences of the United States of America they now report on these results.

Our sensory organs translate sensory stimuli into electrical signals, which are then transmitted and processed by the neural networks in the brain. Among other things, these transformations in the cerebral cortex allow us to process visual impressions, store memories, and make decisions.


Processing of visual memories is reflected in the activity of the visual cortex neurons.

N. Kraynyukova/Max Planck Institute for Brain Research

Although neuroscience is still far from an adequate understanding of these impressive processes in the brain, it is nevertheless possible to relate them to a series of brain states.

The researchers of the working group "Theory of Neuronal Dynamics" at the Max Planck Institute for Brain Research have now shown how a single network model can adequately represent the diverse states of neuronal activity.

To do so, they extended the "Stabilized Supralinear Network Model" (SSN) that researchers have previously used to successfully display important functions of the visual system.

The two scientists now found out that the possibilities of the SSN are not yet exhausted, and showed when the SSN can also describe bistable, oscillating and persistent states. These results pave the way for a unified theory of cortical function.

Kraynyukova: "The structure of a network is closely related to its ability to create certain functions. Our results accurately describe this relationship and, allow us to obtain information about the structure of the network based on its activity.”

Tchumatchenko says "This theory is very promising. It can now even realistically represent brain functions such as short memory and decision making."

Weitere Informationen:

http://www.pnas.org/content/early/2018/03/06/1700080115.short?rss=1

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung
Further information:
http://www.brain.mpg.de/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>