Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Networks of Gene Activity Control Organ Development

27.06.2019

For the first time, researchers have decoded in two large studies the genetic programmes that control the evolution of major organs in humans and other selected mammals before and after birth. Molecular biologists at Heidelberg University demonstrated that all the organs studied exhibit fundamental and original gene activity networks that must have originated early on in mammalian evolution.

Heidelberg researchers publish evolutionary studies on developmental genetic programmes across mammals


The research group of Prof. Dr. Henrik Kaessmann investigated the activity (expression) of genes across mammalian organ development. The figure (cube) illustrates the three main biological dimensions of the work: species, organs and developmental stages. The evolutionary relationships of species are indicated in a tree on the left frontal surface of the cube, while the expression of an exemplary gene across development in different organs is indicated on the right frontal surface.

Source: Kaessmann research group

For the first time, researchers have decoded the genetic programmes that control the development of major organs in humans and other selected mammals – rhesus monkeys, mice, rats, rabbits, and opossums – before and after birth.

Using next-generation sequencing technologies, the molecular biologists at Heidelberg University analysed the brain, heart, liver, kidney, testicles, and ovaries.

Their large-scale study demonstrated, among other things, that all the organs studied exhibit fundamental and original gene activity networks that must have originated early on in mammalian evolution more than 200 million years ago.

In a second large study, the scientists explored for the first time the developmental roles of a hitherto poorly understood but large category of genes, so-called RNA genes, which produce ribonucleic acids and not proteins, like “normal” genes.

A finely tuned and complex interaction of the activity of a large number of genes – also known as gene expression – controls development from a fertilised egg cell to an adult organism. Previously, the understanding of these essential genetic programmes in mammals was restricted to individual protein genes and specific organs or development phases. Furthermore, most previous work focused on the mouse.

“The genetic foundations that account for the differences in size, structure, and function of organs in different mammals were largely unknown,” says Prof. Dr Henrik Kaessmann, group leader of the “Functional evolution of mammalian genomes” research team at the Center for Molecular Biology of Heidelberg University (ZMBH).

To fully investigate the developmental programmes, the Kaessmann team turned to innovative high-throughput approaches. These next-generation sequencing technologies (NGS) enable analysing the expression of all genes in the respective genome at the same time. Using NGS, more than 100 billion expression fragments for both protein and RNA genes from various organs and mammals were read.

“This allowed us to quantify and compare the shifting gene activities over the course of development,” explain Dr Margarida Cardoso-Moreira and Ioannis Sarropoulos, the first authors of the two publications that describe the studies.

The bioinformatic analyses of the data were performed using high-powered computers at the Heidelberg University Computing Centre. They provided new insights into the genetic control of organ development in mammals.

The fundamental and original gene activity networks that the researchers discovered function similarly and determine key developmental processes in all the mammals studied, including humans. That means that these molecular networks already controlled organ development of early mammals 200 million years ago.

The researchers also found a surprisingly large number of genes whose activity patterns deviated significantly from one another in the various species of mammals. These differences, which arose during the course of evolution, explain the specific organ traits of the respective species. For the genes that control brain development, for example, the Heidelberg researchers were able to identify distinct expression patterns in humans.

The scientists also discovered that a surprisingly large number of RNA genes are involved in the control of organ development. Thus, this type of gene, which was previously difficult to characterise, plays an important role in mammalian development, emphasises Prof. Kaessmann.

In their large-scale studies, the ZMBH researchers identified a higher-level pattern in the sequence of the genetic programmes. Whereas they were still very similar in the early, i.e. prenatal, phase of organ development between all the mammals studied, they deviated more and more as time progressed. “The traits of the organs that characterise a species do not originate until later during development”, explains Prof. Kaessmann.

“Using modern molecular methods, we were able for the first time to confirm a groundbreaking hypothesis in biology from the 19th century.” The Baltic German naturalist Karl Ernst von Baer (1792 to 1876) discovered that the embryos of various species of mammal were increasingly difficult to differentiate the younger they were.

Researchers from China, Great Britain, Portugal, Russia, Sweden, Switzerland, and the United States contributed to the study. Funding was provided by the European Research Council, the Swiss National Science Foundation, and a Marie Curie grant from the European Union. The data are available in a public access database. The research results were published in “Nature”.

Caption:
The research group of Prof. Dr. Henrik Kaessmann investigated the activity (expression) of genes across mammalian organ development. The figure (cube) illustrates the three main biological dimensions of the work: species, organs and developmental stages. The evolutionary relationships of species are indicated in a tree on the left frontal surface of the cube, while the expression of an exemplary gene across development in different organs is indicated on the right frontal surface.
Source: Kaessmann research group

Contact:
Heidelberg University
Communications and Marketing
Press Office, phone + 49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht New image of a cancer-related enzyme in action helps explain gene regulation
05.06.2020 | Penn State

nachricht Protecting the Neuronal Architecture
05.06.2020 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>