Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerves control the body’s bacterial community

26.09.2017

CAU research team proves, for the first time, that there is close cooperation between the nervous system and the microbial population of the body

A central aspect of life sciences is to explore the symbiotic cohabitation of animals, plants and humans with their specific bacterial communities. Scientists refer to the full set of microorganisms living on and inside a host organism as the microbiome. Over the past years, evidence has accumulated that the composition and balance of this microbiome contributes to the organism’s health.


Fibres of intestinal tissue (in red) surround the nerve cells (in green) of the freshwater polyp Hydra.

Image: Christoph Giez, Dr. Alexander Klimovich


Nerve cells (in green) of the freshwater polyp Hydra produce antimicrobial peptides and thus shape the animal’s microbiome. Rod-shaped bacteria can be seen at the base of the tentacles marked in red.

Image: Christoph Giez, Dr. Alexander Klimovich

For instance, alterations in the composition of the bacterial community are implicated in the origin of various so-called environmental diseases. However, it is still largely unknown just how the cooperation between organism and bacteria works at the molecular level and how the microbiome and body exactly act as a functional unit.

An important breakthrough in deciphering these highly complex relationships has now been achieved by a research team from Kiel University’s Zoological Institute. Using the freshwater polyp Hydra as a model organism, the Kiel-based researchers and their international colleagues investigated how the simple nervous system of these animals interacts with the microbiome.

They were able to demonstrate, for the first time, that small molecules secreted by nerve cells help to regulate the composition and colonisation of specific types of beneficial bacteria along the Hydra’s body column.

“Up to now, neuronal factors that influence the body’s bacterial colonisation were largely unknown. We have been able to prove that the nervous system plays an important regulatory role here,” emphasises Professor Thomas Bosch, evolutionary developmental biologist and spokesperson of the Collaborative Research Centre 1182 "Origin and Function of Metaorganisms", funded by the German Science Foundation (DFG).The scientists published their new findings in Nature Communications this Tuesday.

The research team, led by Bosch, use the freshwater polyp Hydra as the model organism to elucidate the fundamental principles of nervous system structure and function. Hydra represent an evolutionary ancient branch of the animal kingdom; they have a simple body plan with a nerve net of only about 3000 neurons.

Applying modern experimental technology to these organisms that, despite their simplicity, still share a large molecular similarity with the nervous systems of vertebrates, enabled identification of ancient and therefore fundamental principles of nervous system structure and function.

Using this model organism, the researchers from Kiel University addressed the question of how messenger substances produced by the nervous system, known as neuropeptides, control the cooperation and communication between host and microbes. They collected cellular, molecular and genetic evidence to show that neuropeptides have antibacterial activity which affects both the composition and the spatial distribution of the colonizing microbes.

In order to reveal the connections between neuropeptides and bacterial communities, the Kiel-based researchers first concentrated on the development of the freshwater polyp’s nervous system, from the egg stage through to an adult animal. Cnidarians develop a complete nervous system within about three weeks. During this developmental time, the bacterial communities covering the animal’s surface change radically, until a stable composition of the microbiome finally forms.

Under the influence of the antimicrobial effect of the neuropeptides, the concentration of so-called Gram-positive bacteria, a subgroup of bacteria, decreases sharply over a period of roughly four weeks. At the end of the maturing process, a typical composition of the microbiome prevails, particularly dominated by Gram-negative Curvibacter bacteria.

Since the neuropeptides are particularly produced in certain areas of the body only, they also control the spatial localisation of the bacteria along the body column. Thus, in the head region, for example, there is a strong concentration of antimicrobial peptides, resulting in six times fewer Curvibacter bacteria than on the tentacles.

Based on these observations, the scientists concluded that throughout the course of evolution the nervous system also participated in a controlling role for the microbiome, in addition to its sensory and motor tasks.

“The findings are also important in an evolutionary context. Since the ancestors of these animals have invented the nervous system, it seems that the interaction between the nervous system and the microbiome is an ancient feature of multicellular animals. Since the simple design of Hydra has great basic and translational relevance and promises to reveal new and unexpected basic features of nervous systems, further research into the interaction between body and bacteria will therefore concentrate more on the neuronal aspects,” said Bosch, to summarise the significance of the work.

Original publication:
René Augustin, Katja Schröder, Andrea P. Murillo Rincón, Sebastian Fraune, Friederike Anton-Erxleben, Ava-Maria Herbst, Jörg Wittlieb, Martin Schwentner, Joachim Grötzinger, Trudy M. Wassenaar, Thomas C.G. Bosch (2017): “A secreted antibacterial neuropeptide shapes the microbiome of Hydra”. Nature Communications, Published on September 26, 2017, https://www.nature.com/articles/s41467-017-00625-1

Photos/material is available for download:

https://youtu.be/b44VPDhZKTQ
The simple structures of the freshwater polyp Hydra make it easier to research the interaction between the nervous system and the bacterial community.
Video: Priority research area "Kiel Life Science“, Kiel University

http://www.uni-kiel.de/download/pm/2017/2017-294-1.jpg
Caption: Nerve cells (in green) of the freshwater polyp Hydra produce antimicrobial peptides and thus shape the animal’s microbiome. Rod-shaped bacteria can be seen at the base of the tentacles, marked in red.
Image: Christoph Giez, Dr. Alexander Klimovich

http://www.uni-kiel.de/download/pm/2017/2017-294-2.jpg
Caption: Fibres of intestinal tissue (in red) surround the nerve cells (in green) of the freshwater polyp Hydra.
Image: Christoph Giez, Dr. Alexander Klimovich

Contact:
Prof. Thomas Bosch,
Zoological Institute, Kiel University
Tel.: 0431-880-4170
E-Mail: tbosch@zoologie.uni-kiel.de

More information:
Priority research area “Kiel Life Science”, Kiel University
http://www.kls.uni-kiel.de

Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms", Kiel University:
http://www.metaorganism-research.com

Cell and Developmental Biology (Bosch group), Zoological Institute, Kiel University
http://www.bosch.zoologie.uni-kiel.de

Kiel University
Press, Communication and Marketing, Dr. Boris Pawlowski
Address: D-24098 Kiel, phone: +49 (0431) 880-2104, fax: +49 (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de
Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni Text / Redaktion: Christian Urban

Link to Kiel University Press Release:
http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2017-294-nerven-bakterien&...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>