Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve cells use brain waves to judge importance

09.08.2018

Neurobiologists from Tübingen and Munich find clues as to how the brain separates the important from the unimportant

The precise interaction of brain waves and nerve cells may be decisive for the amazing ability of our brain to separate important from unimportant information, even when we are flooded with stimuli.


Researchers at the University of Tübingen and the Technical University of Munich have been able to show through experiments on Rhesus monkeys that the exact point in time at which certain nerve cells discharge seems to play a key role in separating "the wheat from the chaff" in working memory. The findings will be published on Wednesday in the scientific journal “Neuron”.

At work, on the road or in the midst of a crowd – every day we are all exposed to situations in which we are confronted with a multitude of stimuli. Nevertheless, we act purposefully and safely in such situations. Our working memory seems to be able to effortlessly filter out relevant information and ignore the other, unimportant stimuli.

In order to find out what is happening in the brain, the Tübingen researchers trained rhesus monkeys to separate relevant numbers, which they had to remember in a short time, from interfering numbers. During the experiment, the electrical signals of nerve cells in the cerebral cortex of the animals were measured using microelectrodes. The scientists observed that the simultaneous discharge of thousands of nerve cells caused large-scale oscillating fluctuations (“brain waves”) in electrical brain activity.

Low frequency waves (known as theta waves) of four to ten cycles per second, proved to be particularly decisive. “We observed that both the relevant and the interfering information was transmitted in this theta frequency range,” said Professor Andreas Nieder from the Institute of Neu-robiology at the University of Tübingen.

“However, the nerve cells responsible for the relevant information always discharged when the theta wave was at its lowest point. Contrarily, the nerve cells responsible for the disturbing stimulus always fired at the time when the theta wave was at its peak. We believe that the brain uses certain frequency channels to transmit information synchronously, but at the same time this wealth of information is also sorted according to whether it is important and unimportant during the transmission between brain areas,” explains Nieder.

The leading author of the study, Dr. Simon Jacob, a neurologist at the Klinikum rechts der Isar at the Technical University of Munich, emphasizes the medical significance of the study: “Our results show that cognitive brain functions require precise interaction of nerve cells. It makes sense to use the mechanisms investigated in the animal model for therapeutic purposes in patients with memory dis-orders, for example by stimulating coordinated communication between the brain regions studied.”

Further studies will, however, be necessary to show whether the results of the study can be regarded as a general principle for how the brain processes cognitive information across separate areas of the brain.

Wissenschaftliche Ansprechpartner:

Contact:
Prof. Dr. Andreas Nieder
University of Tübingen
Institute of Neurobiology
Phone +49 7071 29-75347
https://homepages.uni-tuebingen.de/andreas.nieder/

Originalpublikation:

Simon N. Jacob, Daniel Hähnke, and Andreas Nieder: Structuring of abstract working memory con-tent by fronto-parietal synchrony in primate cortex. Neuron. Online in the week from August 6 to 10, 2018. https://www.cell.com/neuron/newarticles

Antje Karbe | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-tuebingen.de/

Further reports about: Nerve Neuron brain areas brain processes cerebral cortex nerve cells waves working memory

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>