Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve cells key to making sense of our senses

21.11.2011
The human brain is bombarded with a cacophony of information from the eyes, ears, nose, mouth and skin.

Now a team of scientists at the University of Rochester, Washington University in St. Louis, and Baylor College of Medicine has unraveled how the brain manages to process those complex, rapidly changing, and often conflicting sensory signals to make sense of our world.

The answer lies in a relatively simple computation performed by single nerve cells, an operation that can be described mathematically as a straightforward weighted average. The key is that the neurons have to apply the correct weights to each sensory cue, and the authors reveal how this is done.

The study, to be published online Nov. 20 in Nature Neuroscience, represents the first direct evidence of how the brain combines multiple sources of sensory information to form as accurate a perception as possible of its environment, the researchers report.

The discovery may eventually lead to new therapies for people with Alzheimer's disease and other disorders that impair a person's sense of self-motion, says study coauthor Greg DeAngelis, professor and chair of brain and cognitive sciences at the University of Rochester. This deeper understanding of how brain circuits combine different sensory cues could also help scientists and engineers to design more sophisticated artificial nervous systems such as those used in robots, he adds.

The brain is constantly confronted with changing and conflicting sensory input, says DeAngelis. For example, during IMAX theater footage of an aircraft rolling into a turn "you may find yourself grabbing the seat," he says. The large visual input makes you feel like you are moving, but the balance cues conveyed by sensors in your inner ear indicate that your body is in fact safely glued to the theater seat. So how does your brain decide how to interpret these conflicting inputs?

The study shows that the brain does not have to first "decide" which sensory cue is more reliable. "Indeed, this is what's exciting about what we have shown," says DeAngelis. The study demonstrates that the low-level computations performed by single neurons in the brain, when repeated by millions of neurons performing similar computations, accounts for the brain's complex ability to know which sensory signals to weight as more important. "Thus, the brain essentially can break down a seemingly high-level behavioral task into a set of much simpler operations performed simultaneously by many neurons," explains DeAngelis.

The study confirms and extends a computational theory developed earlier by brain and cognitive scientist Alexandre Pouget at the University of Rochester and the University of Geneva, Switzerland and a coauthor on the paper. The theory predicted that neurons fire in a manner predicted by a weighted summation rule, which was largely confirmed by the neural data. Surprisingly, however, the weights that the neurons learned were slightly off target from the theoretical predictions, and the difference could explain why behavior also varies slightly from subject to subject, the authors conclude. "Being able to predict these small discrepancies establishes an exciting connection between computations performed at the level of single neurons and detailed aspects of behavior," says DeAngelis.

To gather the data, the researchers designed a virtual-reality system to present subjects with two directional cues, a visual pattern of moving dots on a computer screen to simulate traveling forward and physical movement of the subject created by a platform. The researchers varied the amount of randomness in the motion of the dots to change how reliable the visual cues were relative to the motion of the platform. At the end of each trial, subjects indicated which direction they were heading, to the right or to the left.

The experiments were conducted at Washington University, and the team included Christopher Fetsch, now a post-doctoral fellow at the University of Washington, and Dora Angelaki, now chair of the Department of Neuroscience at Baylor College of Medicine. The research was supported by funding from the National Institutes of Health, the National Science Foundation, the Multidisciplinary University Research Initiative, and the James McDonnell foundation.

About the University of Rochester

The University of Rochester (http://www.rochester.edu) is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, School of Medicine and Dentistry, School of Nursing, Eastman Institute for Oral Health, and the Memorial Art Gallery.

Susan Hagen | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>