Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neonicotinoid pesticides cause harm to honeybees

27.06.2016

Mainz researchers discover new mechanism associated with the worldwide decline of bee populations

One possible cause of the alarming bee mortality we are witnessing is the use of the very active systemic insecticides called neonicotinoids. A previously unknown and harmful effect of neonicotinoids has been identified by researchers at the Mainz University Medical Center and Goethe University Frankfurt.

They discovered that neonicotinoids in low and field-relevant concentrations reduce the concentration of acetylcholine in the royal jelly/larval food secreted by nurse bees. This signaling molecule is relevant for the development of the honeybee larvae. At higher doses, neonicotinoids also damage the so-called microchannels of the royal jelly gland in which acetylcholine is produced. The results of this research have been recently published in the eminent scientific journal PloS ONE.

"As early as 2013, the European Food Safety Authority published a report concluding that the neonicotinoid class of insecticides represented a risk to bees," said Professor Ignatz Wessler of the Institute of Pathology at the University Medical Center of Johannes Gutenberg University Mainz (JGU). "The undesirable effect of neonicotinoids now discovered is a further indication that these insecticides represent a clear hazard to bee populations and this is a factor that needs to be taken into account in the forthcoming reassessment of the environmental risks of this substance class."

Working in collaboration with Professor Bernd Grünewald of the Bee Research Institute at Goethe University Frankfurt, Professor Ignatz Wessler and his team uncovered this previously unknown damaging effect of neonicotinoids that impairs the development of honeybee larvae.

Wessler and Grünewald were able to directly demonstrate that neonicotinoids reduce the acetylcholine content of the larval food produced by nurse bees. Acetylcholine is a signaling molecule produced in the microchannels of the royal jelly gland of nurse bees. Comparable to neonicotinoids, it stimulates the nicotinic acetylcholine receptors that are also present in this gland.

"In lab tests we artificially removed acetylcholine from the larval food and the result was that bee larvae fed with this died earlier than bee larvae that received food containing acetylcholine," explained Wessler. In order to examine the effect of neonicotinoids on the acetylcholine content in the jelly in more detail, bee colonies were exposed to various concentrations of neonicotinoids in flight tunnels (clothianidin: 1, 10 and 100 µg/kg glucose solution; thiacloprid 200 and 8800 µg/kg).

"This exposure led to a reduction in the acetylcholine content of the jelly. Thus we were able to demonstrate that the field-relevant dose of the neonicotinoid agent thiacloprid (200 µg/kg) significantly reduces acetylcholine content by 50 percent. On exposure to higher doses, we were even able to verify that acetylcholine content can be reduced by 75 percent. Exposure of the bees with the higher doses results in serious damage to the microchannels and secretory cells of the jelly gland," emphasized Professor Ignatz Wessler. "Our research results thus confirm that the neonicotinoids can jeopardize the normal development of honeybee larvae."

The EU came to a similar conclusion back in December 2013 and imposed temporary restrictions on the use of three neonicotinoids, i.e., clothianidin, imidacloprid, and thiamethoxam. It had already been reported in several scientific publications that high but not lethal doses of various neonicotinoids could be associated with the falls in the populations of wild bees, bumblebees, and queen bees. Also reported were abnormalities in breeding activity and impaired flight orientation in the case of honeybees.

However, at the time there were critics of these reports who pointed out that, among other things, the researchers had used high, non-field-relevant doses of neonicotinoids and had carried out their experiments under artificial laboratory conditions. Moreover, the proponents of the use of neonicotinoids cited other possible causes of bee mortality, for example, the proliferation of the varroa mite and other pathogens.

Publication:
Wessler, I., Gärtner H.-A., Michel-Schmidt R., Brochhausen C., Schmitz L., Anspach L., Grünewald B., Kirkpatrick C.-J., Honeybees Produce Millimolar Concentrations of Non-neuronal Acetylcholine for Breeding: Possible Adverse Effects of Neonicotinoids. PLOSONE,
DOI: 10.1371/journal.pone.0156886

Contact:
Professor Dr. Ignatz Wessler
Institute of Pathology
Mainz University Medical Center
phone +49 6131 17-2824, e-mail: wessler@uni-mainz.de

Press contact:
Oliver Kreft, Press and Public Relations – Mainz University Medical Center,
phone +49 6131 17-7424, fax +49 6131 17-3496, e-mail: pr@unimedizin-mainz.de

Weitere Informationen:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156886

Petra Giegerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-mainz.de/

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>